日本鑒於為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於2016年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於同年12月9日召開第一次會議。討論的範圍則包括:為實現自動駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。
會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「以非平地休息服務站為據點的自動駕駛服務」等議題速成立工作小組,將對自動駕駛所應用技術進行各類型實證試驗。
其中,在「以非平地休息服務站為據點的自動駕駛服務」方面,已於2017年2月展開補助試驗計畫的募集;預計驗證的項目有分別針對一般(搭載2-10人)以及大型車輛(10人以上),結合GPS、雷達、攝影機等來瞭解障礙物資訊的車輛自動控制技術。
而在「大卡車列隊行走」方面,國土交通省則是在2016年已開始的實證試驗基礎上持續拓展。未來在2019年中後,並規劃將驗證範圍擴展至高速公路上驗證更長距離的自動駕駛。
本文為「經濟部產業技術司科技專案成果」
美國聯邦貿易委員會(下稱FTC)於2024年4月23日通過「禁止企業簽訂競業禁止契約」最終版本的規定(以下稱「最終規定」) ,FTC認為「簽訂或執行競業禁止契約」違反《聯邦貿易委員會法》(Federal Trade Commission Act)第5條之防止不公平競爭之違法手段之規定。最終規定所禁止簽訂競業禁止契約的對象廣泛,包含獨立承包商、為營利企業工作的員工,並將可能取代其他規範競業禁止契約效力之州法。不過,尚有部分情形將排除最終規定的適用,如: (1)公司與高階主管的既有競業禁止契約仍屬有效,而高階主管被定義為「年收入超過 151,164 美元(約新臺幣4,927,492元)且擔任決策職位」的員工,如總裁、首席執行長或其他擁有企業重大決策權的職位。 (2)允許出於善意收購企業的雙方簽訂競業禁止契約。 (3)因FTC對於某些產業無監管權,因此該等產業不適用於禁止簽訂競業禁止契約的最終規定,如非營利組織、銀行、保險公司以及航空公司。 FTC指出最終規定於美國聯邦公報上公布120天(約4個月)後生效,並要求現已簽訂競業禁止契約之雇主負有通知義務,雇主須透過數位(電子郵件或簡訊)或紙本方式,明確地通知現任、前員工,其既有的競業禁止契約即將失效。 但美國商會(U.S. Chamber of Commerce)已聲明表示該最終規定有超出FTC管轄範圍之疑慮,故後續可否執行最終規定,仍有待密切關注。 為因應FTC大範圍禁止簽訂競業禁止契約之法制方向,建議公司可參考資策會科法所發布之「營業秘密保護管理規範」以系統性方式檢視不同面向的既有管理作法,如人員面、內容面等,以落實對於營業秘密的保護。 1.關於文件的管理建議 先盤點紙本及數位機密文件;再設定文件之接觸權限。 2.關於人員的管理建議 留意人員的智財教育訓練;人員的保密或智財權歸屬契約,確保契約約定已納入公司想保護的機密資訊,比如客戶或供應商名單及聯絡資訊、產品規格、製程等;以及離職管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
日本產業競爭力強化法簡介—以新事業活動特例制度為中心 美國證券交易委員會允許Overstock公司以區塊鏈(Block Chain)技術為基礎發行公司證券數位金融時代已然來臨。美國金融證券市場在2015年12月發生一些重大轉變,其中之一為美國證券交易委員會(U.S. Securities and Exchange Commission,下稱SEC)允許Overstock.com公司以區塊鏈技術(Blockchain technology)為基礎透過網路發行公司證券。 區塊鏈技術為一種以分散式結構方式,記錄數據、傳輸及驗證的方法。當有資訊產生時,所有相連電腦會共同驗證該資訊之真實性。驗證該資料具真實性後會寫入區塊鏈,並產生不可竄改的紀錄。 區塊鏈技術特點如下: 一、分散式結構之設計:可達到去中心化效果,以此降低資料遭駭客攻擊或竄改之風險,提升資訊安全。 二、驗證機制:可提供所有參與者共同驗證資料真實性,打造安全可靠之共識環境。 三、P2P機制:可節省繁瑣程序並降低交易成本。 綜合上述三點,區塊鏈技術受到市場極大的關注。為提升資訊安全與降低交易成本及因應數位金融時代,金融業者嘗試將區塊鏈技術應用於股票、債券或是有價證券交易市場,期望可完善金融交易環境。 雖然區塊鏈技術潛在市場龐大,但Overstock公司也在向SEC申請允許以區塊鏈技術發行證券之文件中,指出其選擇將公司訊息儲存在任何人皆可查閱之公開區塊鏈,可能導致個人對其隱私安全的疑慮。即便有此風險,仍認為區塊鏈技術應用於發行證券,將有助完善證券市場交易環境,透過區塊鏈技術,將可紀錄所有交易,從中減少中間商控制市場的空間,並減少賣空之套利行為。 但是,將區塊鏈技術應用於數位金融或許將衍生金融法規相關問題。因為金融法規針對不同類型金融商品,有相關規範管制。若應用區塊鏈技術於相關金融商品,勢必產生相應問題。諸如:股票交易需依據證券交易條例實行,然其中並未設有電子移轉及交易相關規範,若應用區塊鏈技術進行證券交易,主管機關須思考如何規範並控管市場。因此,金融法規將勢必隨之調整以符合數位化趨勢。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。