澳洲規劃研修「國家重型車輛法」並探討科技設備檢測疲勞駕駛相關規範

  澳洲國家交通委員會(National Transport Commission)與警覺、安全、生產力合作研究中心(Cooperative Research Centre for Alertness, Safety and Productivity ,Alertness CRC)於2016年12月攜手研究重型車輛駕駛員之疲勞駕駛影響,並特別探討科技設備檢測及因應的可行性,並著手研析重型車輛疲勞駕駛管理相關規範之評估規劃。

  依據澳洲國家重型車輛法(Heavy Vehicle National Law,HVNL)規定,設有國家重型車輛管理獨立機構(The National Heavy Vehicle Regulator,NHVR)針對總重4.5噸之重型車輛進行規範監管。依國家重型車輛疲勞管理規則【Heavy Vehicle (Fatigue Management) National Regulation】規定針對1.超過12噸總重額(Gross Vehicle Mass,GVM)之重型車輛2. 車輛及聯結物超過12噸者3.超過4.5噸可乘載12名成人(包含司機)之巴士4.超過12噸總重額定值之卡車及聯結車,其附接工具或機械者,必須進行疲勞管制,其他對於有軌電車、工具機械車輛(例如:推土機、拖拉機)、露營車等則不在此管制對象。該法針對重型車輛工作和休息時間、工作及休息時間之紀錄、疲勞管理豁免(Fatigue management exemptions),及公司、負責人、合夥人、經理等的連帶責任,訂有相關規範。疲勞管理規則的規範核心在於駕駛員不能在疲勞的情況下行駛重型車輛,故即使符合工作和休息限制,駕駛員也可能因疲勞而受影響。

  目前,因有限的證據表明工作安排對於重型車輛駕駛員疲勞的影響程度,亦很少有研究使用客觀和預測技術測量駕駛員的警覺性和疲勞,另對於駕駛員睡眠的質量和時間最低要求的資訊亦不足。因此,現行法律規範對重型車輛駕駛員疲勞的影響將受到挑戰。故警覺、安全、生產力合作研究中心將採取更精準的警報檢測方法和睡眠監測設備,進行相關研究測試,以作為未來國家重型車輛疲勞管理規則修訂之依據。

  駕駛疲勞所引發的交通事故時有耳聞,往往造成重大危害與耗費社會成本。目前實務上已有利用科技設備偵測是否有疲勞駕駛情形,然而更重要的是,應落實行車前的疲勞管制,及相對應的解決方案,並加強公司及相關管理者之監督義務及連帶責任,才能有效降低疲勞駕駛肇事率,確保道路安全。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 澳洲規劃研修「國家重型車輛法」並探討科技設備檢測疲勞駕駛相關規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7774&no=55&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
歐盟批准Google併購DoubleClick公司

  Google 在2007年4月買下DoubleClick之後,競標落敗的微軟連同其他Google對手,控告Google和DoubleClick的結合,恐怕有壟斷之嫌,因此引來FTC和歐盟執委會的調查。   Google此前已經於去年12月首先取得美國聯邦貿易委員會的併購核準。歐盟執行委員會(EUropean Commission;EC)則於日前宣布通過無條件批准Google以31億美元收購線上廣告業者DoubleClick的購併案。   另據CNN Money網站報導,歐盟執委會通過雙方合併,主要基於沒有重大證據顯示,雙方的結合將會削弱微軟(Microsoft)、雅虎(Yahoo!)、美國線上(AOL)等競爭對手的生存空間;其次,Google和DoubleClick彼此並不存在競爭關係,雙方合併對線上廣告市場的競爭,不至於帶來負面的衝擊。   不過,提倡保護個人隱私的組織反對該收購交易,他們認為Google與DoubleClick合併之後,使兩家公司更容易獲取消費者個人資訊。但是歐盟執委會表示個人隱私權問題並非是否同意兩家公司合併的考量事項。   在得到歐盟方面正式核準之後,Google將會正式採取行動併購DoubleClick,將其線上廣告的經營,從文字廣告拓展至顯示廣告(display advertisement)領域。但在這塊線上廣告市場的步步進逼,勢必會刺激微軟加速買下雅虎的決心。

何謂「標準必要專利」?

  標準必要專利(standards-essential patents,SEPs)是國際標準組織所採行的一種專利運用模式,主要係為了使標準共通技術普及之同時平衡專利權人之利益,將技術發展中重要的標準共通技術結合專利保護,同時均要求專利權人須簽署FRAND(Fair,Reasonable and Non-discriminatory)條款,以公平、合理、無歧視之原則收取合理數額之專利授權費供標準化組織成員有償使用。然而,因專利本身即是一種合法壟斷,是以標準必要專利之授權模式可實現利益最大化;但涉及到具高度共通性又難以迴避的技術時,應當避免少數專利權人濫用專利權和市場壟斷。因此,專利權人和被授權人之間,對於收取合理專利授權費之議題,在一直無法取得共識之下,往往訴諸法律解決。從美國聯邦法院涉及標準必要專利侵權之訴訟案例,可看出美國針對標準必要專利目前主要有下列幾種趨勢:(1)合理之專利授權費以該技術佔產品元件之比率計算;(2)標準必要專利之授權費金額逐步降低;(3)專利權人必須先進行授權流程(4)不能直接申請禁制令。

從Advantek 與Walk-Long寵物屋之爭了解美國聯邦巡迴上訴法院之設計專利禁反言判斷原則

  一般實務上較熟悉發明或新型專利在申請過程中,調修權利範圍與其後訴訟禁反言之關聯性,然而在設計專利申請過程中,圖式的調修或圖式組合的選取對往後訴訟在權利範圍主張所造成的影響,在實務上則相對不明確。而美國聯邦巡迴上訴法院(the United States Court of Appeals for the Federal Circuit, 簡稱CAFC)在2018年8月1日對「Advantek Mktg., Inc. v. Shanghai Walk-Long Tools Co., Ltd.」一案作出判決,依循了設計專利禁反言之判斷原則,這也是CAFC根據此判斷原則所作出的第二個判決。   Advantek Mktg., Inc.(後稱Advantek)擁有「寵物屋(Gazebo)」美國設計專利(D715,006,後稱系爭專利),其認為Walk-Long Tool Co., Ltd.(後稱Walk-Long)之「有蓋寵物屋」產品(後稱系爭產品)侵權,因此在2016年提出專利侵權訴訟。一審中,Walk-Long指出Advantek在專利審查過程中選擇放棄「附蓋寵物屋」之圖式,是故意放棄專利範圍(intentionally surrendered patent claim scope)以取得專利,而根據禁反言原則認為Advantek申請階段已放棄附蓋之設計態樣因此無法主張權利,地方法院認同Walk-Long。   Advantek提起上訴,CAFC根據其於2014年判決中所提出之設計專利禁反言判斷原則:(1)是否有放棄專利範圍;(2) 該放棄是否以專利性為由而提出;(3)被控侵權產品是否落入該放棄之範圍中,認為系爭產品並不符合第三點,即未落入所放棄之圖式範圍,亦即系爭專利之範圍為寵物屋骨架結構(skeletal structure),不論系爭產品是否有其他特徵(是否附有蓋)皆落入系爭專利之權利範圍;此外,根據2016年最高法院在「Samsung v. Apple」案中針對複數構件之產品認定專利侵權範圍時,是以部分構件而非完整產品進行檢視,亦即系爭產品僅須一部分與系爭專利一致便落入專利範圍,而非以產品整體視之,並據此兩觀點駁回地院判決。   本案重點在於,專利申請過程中審查委員發現一案多實施例的情況提出選取要求(restriction requirement),當申請人選取部分圖式為產品之核心設計形成較大的專利範圍(如本案選擇的寵物屋骨架結構),並不會造成禁反言,當禁反言在調修或選取時限縮專利範圍才會成立。此外,建議設計專利之申請範圍係以核心設計或主要設計特徵而非納入產品之整體設計,如此未來主張權利範圍將相對寬廣。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP