澳洲國家交通委員會(National Transport Commission)與警覺、安全、生產力合作研究中心(Cooperative Research Centre for Alertness, Safety and Productivity ,Alertness CRC)於2016年12月攜手研究重型車輛駕駛員之疲勞駕駛影響,並特別探討科技設備檢測及因應的可行性,並著手研析重型車輛疲勞駕駛管理相關規範之評估規劃。
依據澳洲國家重型車輛法(Heavy Vehicle National Law,HVNL)規定,設有國家重型車輛管理獨立機構(The National Heavy Vehicle Regulator,NHVR)針對總重4.5噸之重型車輛進行規範監管。依國家重型車輛疲勞管理規則【Heavy Vehicle (Fatigue Management) National Regulation】規定針對1.超過12噸總重額(Gross Vehicle Mass,GVM)之重型車輛2. 車輛及聯結物超過12噸者3.超過4.5噸可乘載12名成人(包含司機)之巴士4.超過12噸總重額定值之卡車及聯結車,其附接工具或機械者,必須進行疲勞管制,其他對於有軌電車、工具機械車輛(例如:推土機、拖拉機)、露營車等則不在此管制對象。該法針對重型車輛工作和休息時間、工作及休息時間之紀錄、疲勞管理豁免(Fatigue management exemptions),及公司、負責人、合夥人、經理等的連帶責任,訂有相關規範。疲勞管理規則的規範核心在於駕駛員不能在疲勞的情況下行駛重型車輛,故即使符合工作和休息限制,駕駛員也可能因疲勞而受影響。
目前,因有限的證據表明工作安排對於重型車輛駕駛員疲勞的影響程度,亦很少有研究使用客觀和預測技術測量駕駛員的警覺性和疲勞,另對於駕駛員睡眠的質量和時間最低要求的資訊亦不足。因此,現行法律規範對重型車輛駕駛員疲勞的影響將受到挑戰。故警覺、安全、生產力合作研究中心將採取更精準的警報檢測方法和睡眠監測設備,進行相關研究測試,以作為未來國家重型車輛疲勞管理規則修訂之依據。
駕駛疲勞所引發的交通事故時有耳聞,往往造成重大危害與耗費社會成本。目前實務上已有利用科技設備偵測是否有疲勞駕駛情形,然而更重要的是,應落實行車前的疲勞管制,及相對應的解決方案,並加強公司及相關管理者之監督義務及連帶責任,才能有效降低疲勞駕駛肇事率,確保道路安全。
本文為「經濟部產業技術司科技專案成果」
據2024年1月5日IAM報導(下稱IAM報導)依據Deloitte 2023年的研究報告(Deloitte IP 360 Survey)指出大部分的企業雖然有認知到營業秘密對於企業而言承載重大的價值,但仍通常缺乏管理的意識和具體措施,然而對於企業來說營業秘密管理卻是具有重要性的。 IAM報導綜整了一篇Deloitte 2023年的研究報告(Deloitte IP 360 Survey,下稱系爭報告),其針對橫跨15個國家、5大產業共57間公司的智慧財產管理成熟度進行調查分析,系爭報告指出大部分的企業針對專利、商標等註冊取得之智慧財產權多擁有成熟且全面的管理措施,但針對其他難以發現的無形資產(“hard-to-find” intangibles),如營業秘密、資料、know-how等,通常缺乏管理的意識和措施,例如:大約有29%的受訪者表示企業「未積極地捕獲」(原文為actively capture,大意指識別、管理和保護)營業秘密;約14%的受訪者表示企業未建立標準化流程或方針以識別營業秘密。並且,針對營業秘密的具體管理作法,IAM報導特別著重以下三點: 1.主動監測:僅僅只有25%的受訪者表示,企業有主動監測營業秘密之產出,並具有相關管制措施。 2.教育訓練:有42%的受訪者表示未受過營業秘密意識的訓練(trade secret awareness training)。IAM報導特別指出,若員工對於營業秘密的範圍以及重要性沒有概念,則營業秘密管理機制的建立也會失去其意義。 3.離職面談:即使有相當大比例的營業秘密訴訟源於離職員工,但在既有離職面談中是否有納入營業秘密意識訓練的調查上,僅有不到一半(47%)的受訪企業表示有做,24%的企業表示沒有做,還有29%的企業不確定是否有做。 綜上所述,系爭報告提出,許多企業在營業秘密的管理上仍有很大的進步空間,並提醒,在訴訟上只有營業秘密擁有者採取「合理保密措施」(包括建立標準化機制)來保護營業秘密時,在法律上才能獲得更大的保護以及獲得損害賠償的機會。 針對營業秘密管理制度建置,企業可參考資策會科法所發布之「營業秘密保護管理規範」,該規範從識別營業秘密開始,到營業秘密使用管理、員工管理(包含人員進用離職時應採取措施、教育訓練)等均有相關要求,可協助企業透過PDCA循環建置系統性營業秘密規範,補足缺乏的營業秘密管理意識和具體保密措施。 本文同步刊登於TIPS網(https://www.tips.org.tw)
特別301報告特別301報告(The Special 301 Report)是由美國貿易代表署(Office of the United States Trade Representative, USTR)公布之關於世界各國智慧財產權年度報告。1988年,美國國會修法增訂「特別301條款」,要求美國貿易代表署針對智慧產權保護或市場開放程度不足之國家,按嚴重程度於特別301報告中分列為「優先指定國家」(Priority Foreign Country)、「優先觀察名單」(Priority Watch List)和「一般觀察名單」(Watch List),並對「優先指定國家」啟動調查及協商談判。 美國每年對世界各國是否有效保護智慧財產權進行審查,並提出特別301報告。報告羅列範圍廣泛,包含: 世界各國智財權保護以及執法有效性; 網路銷售各種盜版及仿冒商標之商品情形; 世界各國貿易壁壘(market access barriers),例如貿易市場不透明、歧視性、或其他限制貿易的措施等,是否妨礙取得醫療保健(healthcare)或其他受智財權保護的資訊。 2019特別 301 報告(2019 Special 301 Report)於2019年4月公布。其中加拿大因簽署了《美墨加協定》(United States-Mexico-Canada Agreement, USMCA),實質改善加拿大智慧財產權環境,因而加拿大已從優先觀察名單轉為一般觀察名單。此外,中國連續15年被列入優先觀察名單,報告認為中國迫切需要進行基本的結構性改革,加強智財權保護。我國自1998年起被列入一般觀察名單,直至2009年除名,至今均未上榜,亦表美國肯認我國的智財保護發展。
英國數位、文化、媒體暨體育部發布資料道德與創新中心公眾諮詢英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年6月13日發布有關資料道德與創新中心(Centre for Data Ethics and Innovation)之公眾諮詢,本次諮詢將於2018年9月5日截止。 在資料使用與人工智慧皆快速發展且對生活模式產生重大改變之背景下,英國政府認為企業、公民以及公部門對於資料及人工智慧的安全及道德創新都需要有明確規範以資遵循,以因應該領域快速發展而生的問題。為此,英國政府欲新建一個資料倫理與創新中心,該中心本身並不會對於資料及人工智慧的使用作出規範,主要係通過吸收各界的經驗及見解,統整這些經驗或見解並轉化為對政府現行監管方面缺陷之建議,該中心具有獨立諮詢之地位(independent advisory status),提供政府對資料及人工智慧相關議題之治理建議。 諮詢文件內指出中心作用及目標旨在提供政府政策指導,並與監管機構、研究機構、公民社會密切合作,以制定正確的政策措施;對於中心的活動及產出,政府認為中心可進行對於資料及人工智慧的分析及預測,並擬定最佳實務作法(如開發有效及合乎道德的資料及AI使用框架),進而向政府提供有助資料及人工智慧之安全及道德創新發展的相關建議。 本次公眾諮詢主要針對資料道德與創新中心之營運方式及重點工作領域徵詢意見,所提出問題大致上包括是否同意中心目前的職責及目標?中心該如何與其他機構進行合作?中心應採取哪些行動?是否同意目前建議的行動類型?中心需要哪些法定權力?中心如何向政府提交建議?是否應將中心提交之建議向大眾公開? 我國行政院於今(2018)年1月18日提出為期4年之「台灣AI行動計畫(2018-2021)」,計畫內容之五大重點為:(1)AI領航推動;(2)AI人才衝刺;(3)建構國際AI創新樞紐;(4)創新法規、實證場域與資料開放;(5)產業AI化,其中,第4點細部內容提及將建立高資安防護及親善介面之資料開放與介接平台,顯見我國政府正全力推動AI發展,亦對資料開放相關議題頗為重視。是以,英國資料道德與創新中心之發展在未來我國推動AI普及與產業AI化之進程上,似可提供我國參考方向,以健全AI發展之法制環境。
醫療物聯網(The Internet of Medical Things, IoMT)醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。