美國最高法院認定警方向通信業者取得嫌犯之通信之基地台位址資訊須持有搜索票

  繼2012年最高法院認為警方在無搜索令的情況下,以GPS追蹤裝置查探犯罪嫌疑人之位置資訊違反憲法第四修正案。最高法院於2017年6月5日,認為警方未持搜索票,而向電信公司取得犯罪嫌疑人過去127天共計12,898筆之行動通信基地台位置資訊(cell-site data)之行為,違反憲法第四修正案。

  由於個人利用行動通訊服務時,必須透過基地台進行通訊,因而可藉由該基地台位置,得知每個人所在之區域位置,而此一通訊紀錄過去被電信公司視為一般的商業資訊,因為得知通訊基地台的位置資訊,無法直接得知個人所在的精準位置,僅能得知其概略所在地區。

  因此,犯罪調查機關基於1979年 Smith v. Maryland案所建立之原則,即只要該個人資訊屬於企業的一般商業紀錄(normal business record),警方可以在無搜索令的情況下,向企業取得個人資訊, 此一原則又稱為第三方法則(third-party doctrine)。過去在地方法院或上訴法院的審理中,法院對此多持正面見解,認為只要該資料與進行中之犯罪偵查活動有實質關聯(relevant and material to an ongoing criminal investigation),警方即可向業者取得。大法官Sonia Sotomayor早在前述2012年GPS追蹤裝置案的協同意見書中表示,第三方法則不應適用在數位時代,例如用戶撥電話給客服人員,或以電子郵件回覆網路購物的賣方等,無數的日常活動已經大量的向第三方揭露許多資訊。

  在數位時代,大量的個人資訊以電磁紀錄的形式掌握在第三方手中,本案最高法院的見解,將會對美國的犯罪調查機關在未持搜索令的情況下,更慎重的判斷向業者取得個人資訊做為犯罪偵查使用時,是否與憲法第四修正案有所違背。

相關連結
你可能會想參加
※ 美國最高法院認定警方向通信業者取得嫌犯之通信之基地台位址資訊須持有搜索票, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7813&no=55&tp=1 (最後瀏覽日:2026/01/27)
引註此篇文章
你可能還會想看
何謂「專利審查高速公路」?

  「專利審查高速公路(Patent Prosecution Highway, PPH)」係指專利審查機關加速專利審查之程序。藉著各國專利局間合約之簽署,當某專利申請在第1間專利局取得至少1請求項(claim)之核准後,申請人得請求加速第2間專利局就該已經核准之請求項之審查程序。申請人得縮短取得專利之期間,參與之專利局亦得藉著利用第1間審查之專利局已有資料,降低審查工作之負荷。但此並不代表於第1間專利局獲准之專利之發明於第2間專利局亦會當然獲准。   台灣目前已與美國、日本、韓國及西班牙簽署備忘錄進行專利審查高速公路之計畫,日後專利申請人得利用此機制,縮短取得專利之時程,專利局的審查速度亦會加快。根據智財局之統計,至2016年6月底,平均首次OA(office action)期間(自PPH文件齊備至首次OA平均期間)為57.6天,平均審結期間(自PPH文件齊備至審結平均期間)則為136.6天。

美國聯邦貿易委員會插手企業資訊安全引起爭議

  美國聯邦貿易委員會(Federal Trade Commission, FTC)於2013年8月29日對位於亞特蘭大的一家小型醫療測試實驗室LabMD提出行政控訴,指控LabMD怠於以合理的保護措施保障消費者的資訊(包括醫療資訊)安全。FTC因此依據聯邦貿易委員會法(Federal Trade Commission Act, FTC Act)第5條展開調查,並要求LabMD需強化其資安防護機制(In the Matter of LabMD, Inc., a corporation, Docket No. 9357)。   根據FTC網站揭示的資訊,LabMD因為使用了點對點(Peer to Peer)資料分享軟體,讓客戶的資料暴露於資訊安全風險中;有將近10,000名客戶的醫療及其他敏感性資料因此被外洩,至少500名消費者被身份盜用。   不過,LabMD反指控FTC,認為國會並沒有授權FTC處理個人資料保護或一般企業資訊安全標準之議題,FTC的調查屬濫權,無理由擴張了聯邦貿易委員會法第5條的授權。   本案的癥結聚焦於,FTC利用了對聯邦貿易委員會法第5條「不公平或欺騙之商業行為(unfair or deceptive acts)」的文字解釋,涉嫌將其組織定位從反托拉斯法「執法者」的角色轉換到(正當商業行為)「法規與標準制訂者」的角色,逸脫了法律與判例的約束。由於FTC過去曾對許多大型科技公司(如google)提出類似的控訴,許多公司都在關注本案後續的發展。

德國聯邦參議院通過保護數位世界隱私之《電信與電子媒體資料與隱私保護法》

  德國聯邦參議院於2021年5月28日通過《電信與電子媒體資料與隱私保護法》(Gesetz zur Regelung des Datenschutzes und des Schutzes der Privatsphäre in der Telekommunikation und bei Telemedien, TTDSG),其目的係保護數位世界中的資料與隱私,平衡數位服務使用者利益與公司經濟利益,並解決因德國電信法(Telekommunikationsgesetz, TKG)、電信媒體法(Telemediengesetz, TMG)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)同時並行,使消費者、電信服務提供者以及監管機關不確定如何適用上開法律之情況。   TTDSG彙集TKG、TMG中資料與隱私保護相關之條文,包含電信保密(Fernmeldegeheimnis)(第3條至第8條)、交通位置資料(第9條至第13條)、來電通知與號碼顯示(第14條至第16條)、終端使用者名錄和相關資料提供(第17條至第18條),以及允許匿名化、可隨時停止使用服務和保護未成年之相關措施(第19條至第23條),並參考GDPR和電子隱私保護指令(ePrivacy-Richtlinie)新增數位遺產(digitaler Nachlass)、終端設備隱私保護、同意管理以及監管之規定。   TTDSG於第4條新增數位遺產規定,終端使用者繼承人或具有相似法律地位者,可以向供應商行使繼承人權利,不受電信保密相關規定限制;在終端設備隱私保護和同意管理之部分,TTDSG第24條規定原則上第三方僅能在終端使用者同意下,於使用者的終端設備中儲存與近用資料,且當事人可隨時撤銷同意。   最後在監管方面,則分為個人資料保護相關與電信媒體領域,前者依TTDSG第28條、第29條由德國聯邦資料保護與資訊自由委員會(Die Bundesbeauftragte für den Datenschutz und die Informationsfreiheit, BfDI)作為獨立的資料保護監管機構,後者則依TDSG第30條屬德國聯邦網路局(Bundesnetzagentur)的職權範圍。

美國加州「Asilomar人工智慧原則決議」

  美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。

TOP