美國參議員提案規範物聯網設備之資安漏洞

  美國參議員2017年08月01日提案立法,要求提供給美國政府的物聯網網路連結設備,須符合產業資訊安全標準,同時規範設備供應商,提供之設備必須可持續更新,不得含有無法更改參數的設定與不得具有任何已知安全漏洞。兩黨皆有參與提案參議員,共和黨為Cory Gardner和Steve Daines,以及民主黨的Mark Warner和Ron Wyden。

  由於物聯網連結數持續成長,與物聯網相連的裝置與感應器,預計在2020年會超過200億台裝置,相關裝置的資料蒐集與傳輸,同時影響消費者與產業。當這些裝置在出廠時若預設無法更改的參數,即預設固定程式無法更新,則該裝置連接物聯網時,會因裝置無法更新程式,而可能產生資安漏洞,進而影響物聯網上其它連結設備之安全性。

  2016至今,物聯網相關設備已被惡意阻斷服務攻擊(DDOS)影響相關網站、伺服器以及網路基礎設施提供者。

  Warner等4位參議員提出的〈2017年物聯網資安改進法〉(Internet of Things (IoT) Cybersecurity Improvement Act of 2017)草案,主要關注:

  1. 聯邦政府採購的物聯網相關設備,須可持續更新、符合產業標準、不含無法更改內建參數的設定、以及不含已知安全漏洞。
  2. 行政管理和預算局(Direct the Office of Management and Budget ,OMB),須發展可供替代網路級(network-level)資安設備以供限制性資料處理。
  3. 國土安全部的國家保護和計畫局(National Protection and Programs Directorate)須向提供連線設備予聯邦政府的承包商,發布整合性的資安漏洞揭露指導原則。
  4. 免除資安研究人員基於誠實信用研究時,所揭露與資安漏洞有關之法規責任。
  5. 要求所有執行機構清點所有連結物聯網的設備。

相關連結
你可能會想參加
※ 美國參議員提案規範物聯網設備之資安漏洞, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7859&no=66&tp=1 (最後瀏覽日:2025/08/20)
引註此篇文章
你可能還會想看
美國專利與商標局拒絕以AI為發明人的專利申請

  美國專利與商標局於2020年4月27日拒絕人工智慧(AI)為發明人之申請並闡明發明人僅限於自然人。本案是美國專利與商標局首次拒絕人工智慧為發明人之申請,同時本最終審查意見(下稱:本意見書)也是第一次闡明發明人僅限於自然人。本意見書也被收錄在美國專利與商標局「人工智慧」、「首席專利審查官最終審查意見」之頁面,作為指標案例。   本意見書是在回應2020年1月20日專利申請申復案(Petition)之審查意見。回顧本專利申請案之基本資料表,發明人名字為「DABUS」、姓氏部分僅以括號註明「由人工智慧自行產生的發明」。本案法定代理人及申請人均為Stephan L. Thaler。Stephan L. Thaler表示,DABUS是一個神經網路系統且「有創意的機器」。美國專利與商標局表示,綜觀美國專利法的用詞(如:Whoever)及立法脈絡,均可得知發明人指的是自然人。具體而言,發明人必須是貢獻發明概念(Conception)的人,專利審查程序手冊(MPEP)定義「發明概念」是一個將發明人「創造行為之心智的完整呈現」(the complete performance of the mental part of the inventive act),僅有自然人具有「心智」(Mental/ Mind),因此發明人僅限於自然人。本審查意見又援引Beech Aircraft Corp. v. EDO Corp.判決,指出「發明人僅限於自然人」。所以,將專利申請基本資料表的姓名欄位填上「DABUS(由人工智慧自行產生的發明)」並不符合美國專利法第115條(35 U.S. Code § 115)。   本案於2019年7月29日提出,隨即於2019年8月8日被美國專利與商標局以「申請文件欠缺,不符合發明人與其繼受人之規範」(35 U.S. Code § 115和37 CFR 1.64)拒絕受理。幾番修正往返後,美國專利與商標局於2019年12月17日仍以「申請文件欠缺」不予受理,Stephan L. Thaler續行申復。美國專利與商標局於2020年4月27日做出本意見書。同一由DABUS創造的發明,但由Ryan Abbott作為申請人的案件,已被歐洲專利局和英國智慧財產局於2019年12月以雷同的理由拒絕。目前美國專利與商標局、歐洲專利局、英國智慧財產局面對人工智慧為發明人之專利申請,立場都是發明人僅限自然人。

日本政府對於「小型無人機進階安全確保制度」進行研議,並研提「航空法」修正建議

  日本政府於2016年1月5日成立「小型無人機進階安全確保制度設計相關小組委員會」(小型無人機の更なる安全確保のための制度設計に関する分科会),聚焦無人機飛安方面之實務議題。會議由内閣官房内閣参事官擔任議長,並由國土交通省航空局協助辦理,民間參與者則多為相關產業公協會,目前規劃每兩個月開1-2次會議,其運行方式包括:原則上為非公開會議,其會議資料將於會後公開,但若議長認有必要,則得決定一部或全部不公開;此外,對於委員會成員以外的民間企業及專家學者之意見,亦應聽取。   為更進一步確保小型無人機於飛行時之安全性,本次會議對「航空法」提出如下修正建議: (1)除「航空法」第一百三十二條之二所規範之飛行方式及禁飛區域外,尚有其他相關飛安重要事項亦應注意,例如:機體本身之缺陷、操控者失誤、不可預期的天候變化、機體重量等(一定重量以上之無人機,對於機體性能及操控者技術應有更高要求,未來可思考訂定罰則或提供擔保)。 (2)對於機場周邊應有比現行法更嚴格之規範,除因此處操控無人機容易誤入禁區外,該範圍以內通常是飛安事故搜救區,恐妨害搜救之進行。 (3)關於禁區內飛行許可之審查,應包含:機體機能與性能、操控者知識、技術與經歷。 (4)對於商業、營業用無人機,應有更高的安全性要求。但何謂商業、營業用之定義及更高安全性究何所指須有更明確的標準!

Google宣告關閉西班牙Google新聞服務

  搜尋引擎巨人Google在西班牙施行新著作權法前關閉該國的Google新聞服務。西班牙將於2015年1月正式施行新著作權法,新法中出版商將可向新聞内容聚合平台業者(news aggregator)徵收授權金,且著作權人不得約定不行使該權利。新法中並未明定新聞内容聚合平台業者如Google新聞與Yahoo新聞應支付的授權金額,但卻規定違反此法令的公司需繳付75萬美金的罰款。   近年來,歐盟各國如德國、法國相繼推行新著作權法,讓著作權人得向新聞内容聚合平台業者徵收授權金,而Google則透過與出版商約定不行使該權利作爲因應措施。而由於西班牙此次的新法規定著作權人不得約定不行使該權利,導致Google首次因法規而關閉該國的Google新聞服務。   Google表示此項新法規要求出版商向Google新聞徵收授權金,哪怕它只是一則小小的摘要。Google新聞的總監Richard Gingras表示Google新聞並未含任何廣告亦無實際盈利;相反地,該服務為出版商帶來超過百萬的讀者流量。新法規的施行將增加Google新聞的營運成本,因此才在新法規施行前關閉西班牙版本的Google新聞服務。   此舉將造成當地網路媒體與出版業者的網路流量損失,爲此西班牙新聞媒體組織 (The Spanish Association of Daily Newspaper Publishers, AEDE)發表聲明希望西班牙政府、歐盟當局及反托拉斯聯盟能介入調解此次Google新聞的關閉事件,以保護人民與企業的權利。   新法施行在即,究竟Google新聞的關閉會對此次西班牙新著作權法的施行造成何種影響值得後續關注。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP