法國國家資訊自由委員會(Commission Nationale de l'Informatique et des Libertés, CNIL)於2025年7月15日指出近年來詐騙案件快速增加,詐欺行為人假冒銀行人員,以電話引導受害者自行完成轉帳或新增收款人等操作。為降低受騙風險,部分銀行在行動應用程式中設計機制,能偵測到使用者操作較高風險的交易時若同時處於通話狀態,便可即時跳出警示或暫停交易。此等做法雖有助於阻詐,惟因涉及個人資料存取,故須符合《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR)之規範。 CNIL提醒銀行蒐集通話資訊須取得使用者明確同意,不能僅依賴行動裝置的「電話」權限,亦不得因使用者拒絕同意而限制應用程式之基本使用,僅在如新增收款人、大額轉帳、或轉帳至高風險國家等異常活動操作中才能要求同意,並須提供網站、電話或分行等替代辦理方式。又相關權限請求應在交易操作過程中提出,而非在應用程式安裝時統一要求,安裝前亦應向使用者充分說明。若使用者不同意,仍必須使其能正常查詢帳戶資訊。 此外,在資料處理上須遵循資料最小化原則,僅得蒐集是否進行通話及通話時長之資訊,不得恣意擴大資料蒐集範圍。與此同時,銀行應讓使用者在同意與撤回同意操作上一樣簡便,不得僅引導至手機裝置設定,而應使消費者能在應用程式中直接操作,並清楚告知撤回同意後功能受限範圍及可替代方案。 除利用應用程式進行通話偵測,CNIL建議銀行尚應搭配其他措施,例如在應用程式內定期推送防詐提醒、舉辦宣導活動,或在確認付款時詢問客戶是否正與自稱是「銀行顧問」之人通話。若銀行欲透過應用程式偵測通話狀態來防詐,則須在合法性、必要性、資料最小化以及使用者同意之間取得平衡。
歐盟透過生態創新(Eco-innovation)減少小客車之二氧化碳排放量小客車(passenger car)排放之二氧化碳(CO2)約佔全歐洲排放總量之12%。為落實歐盟第443/2009號規則(Regulation (EC)No 443/2009)關於減少輕型交通工具CO2排放所設定之新小客車排放表現標準,歐盟執委會於今年(2011)7月25日通過執委員會第725/2011號規則(Commission Regulation(EU)No 725/2011,以下簡稱執委會規則),就汽車製造商對CO2減排所為之生態創新(eco-innovation)科技之評鑑、核准及驗證給予更明確之規範,亦提供更多誘因。 於執委會規則下所認定之生態創新,係指就車輛本質之運輸功能及整體能源消耗有重大改善,且該創新技術(特別是在動力技術方面)於市場上屬未廣泛應用者。此外之附帶目的或旨在提升駕駛或乘客乘坐舒適度之技術,則不在其認定之範圍內(如胎壓監測系統、輪胎轉動阻力、排檔指示、使用生質燃料等,皆不得認定為生態創新)。 汽車製造商及供應商皆得提交申請書,該申請書應有足以證明其符合各項標準之必要證據,包括測定該項創新科技對CO2減排之方法。在證明其CO2減排之成效方面,應就相同車輛使用該技術與否進行比較且其測試方法應屬可供驗證、可得重覆且可資比較者。執委會規則要求CO2減排成效最低應達1gCO2/km。關於驗證,執委會規則要求由獨立驗證機構為之。驗證單位被要求於驗證報告中提供相關證據以證明其與申請者間之獨立關係,以確保其獨立性。歐盟執委會本身亦得於有證據顯示實際驗證之減排量與經認可之生態創新技術之減排量不符之情況下,再次驗證個別車輛之總減排量,但其應提供製造商一定期間以證明認可之價值屬正確者。 早在2007年歐盟所提議之立法中,即對於小客車設定了排放效能之標準,該項立法亦於2009被歐洲議會及歐盟理事會所採納,可謂歐盟試圖改善汽車燃料之經濟性及確保歐盟小客車之平均CO2排放不超過130 gCO2/km之基石。實則於今年(2011)初,歐盟執委會亦設下於2050年前,減少導致地球暖化之交通排放氣體達1990年之60%之計畫。至於上述執委會規則中所取得之碳權,皆將納入歐盟碳排放交易計畫中,新綠色科技最高可抵7gCO2/km之排放,預計將就新車平均排放量於2015年前達到130gCO2/km之目標,執委會規則也預計於同年進行檢視,其實際運作情形及後續發展皆值得予以觀察。
英國成立「技術移轉政府辦公室」,以促進公部門知識資產流通利用英國技術移轉政府辦公室(Government Office for Technology Transfer, GOTT)於2022年10月設立於英國索爾福德(Salford);其為英國商業、能源與產業策略部(Department for Business, Energy & Industrial Strategy, BEIS)之轄下機構,設立之旨在於促進公部門(public sector)知識資產(knowledge asset)流通利用,以為英國帶來經濟、社會及財政上效益。 所謂「知識資產」係指—智慧財產權、專門技術、資料、品牌、業務流程、專家資源及技術等;目前英國關於公部門知識資產之估值,總計約超過1060億英鎊。而所謂「技術移轉」係指使這些資產與他機構分享,以刺激創新及帶動新產品、流程及服務的研發,並促進更多商業創投(commercial venture)的可能。 GOTT具有跨部門的職權,使公部門可增強其對自身知識資產的辨識、研發與利用,並鼓勵公部門在管理其知識資產上,可更具創新性及具有企業家精神。目前,GOTT已開始與其他公部門在創新上合作,例如一造價更低的高密度真空紫外光(Vacuum Ultra-Violet, VUV)光源機,以淨化水質;或以石墨烯(graphene)製成生物傳感器(biosensor),以使在人體上以生物標記(biomarker)偵測不同健康狀況及疾病。 GOTT係以提供資金和專業知識的方式,以在跨部門政府間,進行創新項目的支持;依據英國政府早先所編列的一「關於政府部門應如何管理知識資產」的指南(The Rose Book: guidance on knowledge asset management in government,下簡稱The Rose Book),GOTT係以「提供對The Rose Book之詢答」、「提供對於管理知識資產之訓練」、「形成關於知識資產之人脈網」、「舉辦活動以喚起對知識資產管理重要性的認識」、「告知不同部門其可能擁有的知識資產及可運用機會」等方式,對公部門進行協助(The Rose Book第8.2點參照)。 而依照The Rose Book第8.4點,GOTT亦將與以下單位,分就上述不同事項,及就知識資產爭訟事件提供建言等,進行合作,以對其他公部門提供協助:(1)英國智慧財產局(Intellectual Property Office);(2)英國國防部(Ministry of Defence);(3)英國犁頭創新中心(Ploughshare Innovations);(4)政府法務處(Government Legal Department);(5)國家檔案館(The National Archives)。 而在後續成果運用上,The Rose Book第6.1點提及,公部門於運用知識資產時,可就很多面向進行考慮。除尋求「商業上的回報」外,亦可將「促進各別部門及不同部門間公共事務之進行」,以及「為商業、慈善團體及人民之使用」一事納入考量,藉以達到經濟、社會及財政上效益;而就「商業上的回報」而言,依照The Rose Book第6.35點,除最常見的「技術授權」及「販賣知識資產」外,亦有「衍生新創公司」(spin-outs)及合資公司(joint ventures)等方式。而一知識資產可如何被適當運用,則可尋求專家意見。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).