日本政府於2017年9月4日所召開之國家戰略特區區域會議(下稱戰略區域會議),決定由政府、東京都及愛知縣,共同成立「自駕車實證一站式中心」,協助企業及大學之自駕車相關實證研究。在自動駕駛實驗開始前,中心接受道路交通法等各程序相關諮詢,必要時可將相關程序以其他方式置換,將複數程序整合為一,推動相關實驗。
戰略區域會議並決定將窗口設置於東京都及愛知縣,欲進行實驗之企業可至前述窗口諮詢,東京都及愛知縣應與相關省廳及所管轄之警察、交通部門進行協調,並將所需之資訊彙整後回覆予企業,如此一來,企業可減輕實驗前繁瑣程序所帶來之負擔,進而降低啟動實驗之門檻。
東京都小池百合子知事於會後向記者們表示「自駕系統於汽車產業中,已是國家間之競爭」,且東京都將致力於「沙盒特區」體制之推動,於必要時可暫時停止相關現行法規之限制。愛知縣大村秀章知事則期待「透過實證實驗累積技術,促使愛知縣能維持引領世界汽車產業聚集地之地位」。
針對上述特區的設置,未來實際落實情況以及法規排除作法與範圍,值得我國持續投入關注。
所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。 而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。 德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。 故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。 修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。
美國政府提出新法加強管理軍民兩用技術美國布希政府最近向國會正式提出一個以打擊恐怖主義及大規模毀滅性武器為目的的法案—出口執行法(The Export Enforcement Act of 2007),以期為執法者—美國商務部產業安全局(Bureau of Industry and Security, BIS)提供更有效的工具,防止最具有敏感性的技術或產品落入危險份子手中。 長久以來,美國用以管理敏感性技術與產品的法源是1979年制定的出口管理法(Export Administration Act),該法對軍民兩用的技術與產品,施以出口管制。出口法在2001年失效,同年發生911攻擊事件,因此,布希政府除希望獲得國會重新就出口管理法予以授權外,也希望可以有更強而有力的出口管理權限。不過行政部門迄今未得到國會就出口管理法予以重新授權。 自2001年以來,BIS係依國際緊急情形經濟權力法(International Emergency Economic Powers Act, IEEPA)行使出口管理權限,不過根據IEEPA,美國總統必須每年發布行政令(Executive Order)始能動用出口管理權限,而IEEPA對於違反出口管制規定的處罰也不若出口管理法重,因此,IEEPA除了對執法者造成出口管理的不便的困擾外,寬鬆的處罰也使得美國過去幾年非法技術外移的事件頻傳。 本次布希政府再次提出2007年出口執行法,其內容除了請求國會同意在未來五年再度授權行政部門行使1979年的出口管理法之權限外,其他重要內容尚有:(1)修正1979年的出口管理法之執行與違法規定:除增列構成犯罪之違法出口行為態樣外,並對違法者大幅加重其民刑事處罰。根據修正草案,企業之出口行為若被認定為違法,最高可科處500萬美元或違法出口技術或產品價值之十倍罰金;(2)強化了執法者打擊軍民兩用技術與產品非法出口的職權,明訂商務部特派員擁有海外調查以及秘密調查的權限;(3)對企業所提出之秘密資訊負有保護義務。 整體而言,本法案除了重新授權美國商務部管理軍民兩用技術與產品實施出口管制體系外,同時也代表美國政府於二十一世紀為維護國家安全與處理所面臨之經濟挑戰的長期與根本性改革。目前法案仍須國會討論通過後,始能生效適用。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本《研究資料基盤整備與國際化戰略》報告書日本因應各先進國家近年於開放科學概念下,政府資助研發計畫研究資料管理及開放之倡議與制度化推展趨勢,內閣府於2015年提出開放科學國際動向報告書,並在第5期科學技術基本計畫與2019年統合創新戰略中規劃推動開放科學。上述政策就研究資料管理開放議題,擬定了資料庫整備、研究資料管理運用方針或計劃之制定、掌握相關人才培育與研究資料運用現況等具體施政方針。在此背景下,內閣府於2018年設置「研究資料基盤整備與國際化工作小組(研究データ基盤整備と国際展開ワーキング・グループ)」,持續檢討日本國內研究資料管理、共享、公開、檢索之基盤系統建構與政府制度、國家研究資料戰略與資料方針、國際性層級之推動方向等議題,在2019年10月據此作成《研究資料基盤整備與國際化戰略》(研究データ基盤整備と国際展開に関する戦略)報告書,形成相關政策目標。 本報告書所設定的政策目標採階段性推動,區分為短期目標與中長期目標。短期預計在2020年前,正式開始運用目前開發測試中之研究資料基盤雲端平台系統(NII Research Data Cloud, RDC),針對射月型研發計畫研擬並試行研究資料管理制度,建構詮釋資料(metadata)之集中檢索體系,並建立與歐洲開放科學雲(EOSC)之連結;中長期目標則規劃至2025年前,持續調適運用RDC,正式施行射月型研發計畫之研究資料管理制度,確立共享與非公開型研究資料之管理框架,蒐整管理資料運用現況之相關資訊,並逐步擴張建立與全球研究資料共享平台間之連結。