日本經產省為了促進智慧家庭(smart home)計畫,以促進資料共享與利用。

  經產省為了在智慧家庭領域創造新事業,整備相關資料活用環境,蒐集共有及分析從多種多樣機器及服務所實際產出之資料,於2017年8月開始實施實證實驗。在實施前,為了使參加實證之民間公司間,得為資訊合作而完備相關規則及保安對策,於5月24日召開「智慧家庭資料活用環境整備推進事業」檢討會。因物聯網(IoT)的擴大得以蒐集龐大資料,以及現在人工智慧(AI)解析能力提高下,期待在各種領域提高生產效率及創造新的事業模式。特別是在智慧家庭領域,其在「新產業構造願景的中間整理」(2016年4月27日、產業構造審議會新產業構造部會)中,為有力重要領域。因此,以IoT技術等使家庭內機器網路化,活用此一資料,除了使既存事業模式發生變革或創造新事業模式外,也期待可以透過把握製品之使用資訊,而提高產品回收(recall)率,並促進資源回收以及家庭部門節能化等相關社會課題解決上。為此,本事業係以對於家庭內機器網路化及透過此而創造新事業為目標,整備事業環境與社會課題及各主題新事業服務創造相連結,因應每個人的生活模式而使得生活空間客製化成為可能,實現智慧家庭之社會目標。

本文為「經濟部產業技術司科技專案成果」

※ 日本經產省為了促進智慧家庭(smart home)計畫,以促進資料共享與利用。, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7932&no=55&tp=5 (最後瀏覽日:2026/01/29)
引註此篇文章
你可能還會想看
歐盟計畫降低學名藥壁壘 開罰Teva和Cephalon 6050萬歐元

  歐盟執行委員會(以下簡稱執委會)於2020年11月以延遲平價學名藥進入市場、違反歐盟反托拉斯法為由,裁罰以色列學名藥廠Teva和美國生物製藥公司Cephalon共6050萬歐元。   Cephalon販售的Modafinil是用於治療猝睡症的藥物,為長年佔Cephalon全球營業額40%以上的暢銷產品。儘管其主要專利已於2005年在歐洲到期,但Cephalon仍保有部分Modafinil的延續性專利(secondary patents)。原先欲以Modafinil學名藥進軍市場的Teva也有Modafinil的相關專利,然而Cephalon和Teva達成「延遲給付」(pay-for-delay)協議,Teva同意暫緩進入市場且不去挑戰Cephalon的專利。執委會經調查發現,該協議排除Teva成為Cephalon的市場競爭者,使Cephalon的專利即使到期多年產品仍可維持高價位。   延遲給付協議在專利和解上通常是合法行為,但執委會認為此舉使患者和健保體系無法即早受惠於市場競爭帶來的低價,協議廠商卻享有缺乏競爭所產生的額外利潤。歐盟日前發布的《歐洲藥品戰略》(Pharmaceutical Strategy for Europe)更強調藥品應是全民可負擔、可取得及安全的,而維持自由競爭對達成此目標至關重大。執委會認為延遲給付協議違反《歐盟運作條約》(Treaty on the. Functioning of the European Union, TFEU)第101條,以協議限制或扭曲歐盟內部市場競爭,故裁處高額罰款。2022年歐盟將採取措施降低學名藥進入市場的阻礙,考慮進行審查、要求廠商使其專利藥品在全歐盟境內都可被取得,否則將縮短其智財權的保護期間。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市

  近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。   2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。   卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。   雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。

FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

談數位內容法制之立法模式與合併問題

TOP