德國車輛及其系統新技術研發計畫

  德國經濟與能源部於2017年11月公布車輛及其系統新技術補助計畫期中報告,補助的研究計畫聚焦於自動駕駛技術及創新車輛技術兩大主軸。

  在自動駕駛研究中,著重於創新的感測器和執行系統、高精準度定位、車聯網間資訊快速,安全和可靠的傳輸、設備之間的協作、資料融合和處理的新方法、人機協作、合適的測試程序和驗證方法、電動汽車之自動駕駛功能的具體解決方案。其中以2016年1月啟動的PEGASUS研究項目最受關注,該計畫係為開發高度自動化駕駛的測試方法奠定基礎,特別是在時速達130公里/小時的高速公路上。

  在汽車創新技術的研究發展上,著重於公路和鐵路運輸如何降低能源消耗和溫室氣體排放,包括透過交通工具輕量化以提高能源效率、改善空氣動力學之特性、減少整體傳動系統的摩擦阻力、創新的驅動技術。另外,也特別注重蒐集和利用在車輛操作期間產生的資料,例如在於操作和駕駛策略的設計,維護和修理,或車輛於交通中相互影響作用。

  本報告簡介相關高度實用性技術研究計畫,同時展望未來研究領域,以面對現今產業數位化的潮流和能源效率及氣候保護的發展的新挑戰,因此,資通訊技術、自動控制技術以及乾淨動力來源技術,將會是未來交通領域研究的重點。

本文為「經濟部產業技術司科技專案成果」

※ 德國車輛及其系統新技術研發計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7949&no=57&tp=5 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
日本健康保險擴大遠距醫療適用對象並提高支付標準

  日本厚生勞動省對於利用電話、視訊等資通訊機器所為之遠距醫療,因應明年修正健康保險診療報酬,提高遠距醫療服務給付項目及支付標準,為了明確適用健康保險之相關要件與規定,成立研究委員會以作成相關適用指引。隨著資通訊技術發展,利用資通訊機器所為之遠距醫療漸漸普及。在擔保醫療之安全性、必要性及有效性下,為了更進一步普及並推進適當之診療,有必要整備相關法令規定。厚生勞動省於11月設置研究委員會,預定在2018年3月底前訂定「遠距醫療適用指引(情報通信機器を用いた診療に関するガイドライン)」。   日本1948年制定之醫師法第20條規定醫師非親自診療,不得為治療等行為。此一規定迄今未修正,遠距醫療並非當時所能想像與規範。目前,厚生勞動省以函釋通知方式,對於該條之適用為相關通知與事務聯絡,以擴大遠距醫療適用之可能性。厚生勞動省於1997年第一次發出之通知(平成9年12月24日健政發第1057號厚生省健康政策局長通知),對於遠距醫療與醫師法第20條的適用關係提出基本見解,認為醫師法第20條親自診療原則規定,不一定等於直接見面診療,以代替方式而對於病患身心狀況得以獲得有用資訊下,使用遠距醫療並非違反本條親自診療規定。在本號通知「留意事項」中,對於遠距醫療之適用對象地區與病患,有以下規定:1. 初診原則上必須為面對面診療;2.直接面對面診療有困難之離島及偏遠地區;3. 對於病況穩定之病患,在確保緊急對應處理及聯絡體制下,以「別表」列舉適用之慢性疾病(例如:居家氧氣治療病患)為對象。但是本來只是例式規定的「非初診」「離島及偏遠地區」、「特定慢性疾病」,卻被解釋成限定列舉規定,導致遠距醫療適用範圍非常狹窄,變成原則禁止之情形。   直至2015厚生勞動省再發出通知(平成27年8月10日厚生勞動省事務連絡),明確非初診、離島及偏遠地區、「別表」所列舉之慢性疾病等,僅是例式規定,對象地區及病患不限於此,以及就算是初診,直接為親自診療有困難時,基於病患要求下充分考量病患有利條件下,依據醫師之判斷,活用各種可能之工具,結合社交網路服務(SNS)、視訊影像以及電子郵件等方式組合而為適當之遠距醫療。於「別表」列舉遠距醫療之九種病患對象為,居家氧氣治療病患、居家罕見疾病病患、居家糖尿病患、居家氣喘病患、居家高血壓病患、居家過敏性皮膚炎病患、褥瘡居家療養病患、居家腦血管病患以及居家癌症病患等。   2015年通知使得遠距醫療之適用對象範圍大為擴大,因此日本醫療院所積極整備資通訊設備環境。同時,厚生勞動省在2017年底提出之2018年度福祉預算中,明確修正健康保險診療報酬,提高遠距醫療之醫療服務給付項目與支付標準,使得利用遠距醫療為診療服務之利益大為提高,更加速提高遠距醫療之利用可能性。惟,前述2015年通知之內容,對於適用對象與診療內容,尚有不明確之處,因此邀集醫療、法學、遠距醫療專門等12名專家成立研究委員會,以訂定明確適用規則,防止未來對於病患造成不利益之判斷。

美國又傳疑似商業間諜活動

  2007年3月舊金山聯邦法院受理Oracle軟體公司對競爭對手SAP及其關係企業TomorrowNow提出濫用電腦詐欺、商業間諜行為告訴。   Oracle公司表示,自2006年底起便發現公司網站中與PeopleSoft、J.D. Edwards有關的客戶支援與維護部分出現流量暴增的現象。犯罪者冒用客戶的ID進入網站中竊取重要軟體與資料,目前已發現超過一千萬筆的違法下載紀錄,而犯罪者IP位址是來自於SAP德州辦公室所在地。   訴狀中指出,SAP員工涉嫌冒用多名PeopleSoft及J.D. Edwards的客戶帳號,登入並存取Oracle的重要資料與客戶連繫系統。因此,Oracle要求法院對SAP發出禁制令,以阻止其違法行為,另聲請法院下令要求SAP歸還非法竊取之資料與文件。   面對Oracle指控,SAP公司發言人Steve Bauer表示公司目前仍在瞭解與檢視該案件,因此不便就整起事件發表評論,但公司保證將全力回擊Oracle的指控。

加州消費者隱私保護法修正法案重點說明

  隨著個人資料保護意識的興起,各國也持續增修法律來保護人民權益以及協調產業標準,但這變動的過程會對本來就複雜的法律結構帶來更多挑戰。   如美國同時會有聯邦法與州法兩個層次的法律,當兩者分別發展隱私權相關法律規範時,難免會缺乏協調,出現定義不明的重疊規範,進而提高企業之法令遵循成本與管理成本。最終導致的結果,就是非必要地降低了產業發展速度,以及提高了消費者獲得服務的成本。   日前美國加州政府修改了首部以消費者個人資料權利為規範之州級法律「加州消費者隱私保護法(California Consumer Privacy Act, CCPA)」,使該部法案對於個人資料保護與利用之規範日漸完備,並減少與聯邦政府重複管轄項目,進而達到合理降低州內企業的遵法成本。美國加州州長紐松(Gavin Newsom)簽署的CCPA修正案「AB-713號法案」(Assembly Bill No. 713, an act to amend Sections 1798.130 and 1798.145 of the Civil Code )通過後,CCPA之適用範圍將限縮。若「同時符合」下列二者條件,則可免受CCPA規範: 受「加州醫療資訊保密法」(the California’s Confidentiality of Medical Information Act, CMIA)所規範的的醫療資訊及個人健康資訊之衍生資訊,或受「美國聯邦受試者保護通則」(Federal Common Rule for human research subjects) 所規範的可識別之個人資訊。 根據「健康保險可攜性及責任法」(Health Insurance Portability and Accountability Act, HIPPA)之標準,已去識別化的資訊。   換言之,已經依HIPAA標準去識別化之第一點資訊,即可豁免CCPA針對個人資料保護之相關規定。此將減輕本身不受 HIPAA 規範,但因進行研究或業務目的需接收 HIPPA 去識別化資訊企業之合規負擔。   「AB-713號法案」對於已去識別化資訊之利用或販售行為,增設了契約須載明下列規範架構之條款內容: 如有利用或販售去識別化資訊涉及病患資料者,須在契約中予以聲明。 禁止買受人或被授權利用人以任何方式重新識別去識別化資訊。 除法律另有規定,或第三方受到相同或更嚴格限制之個資保護約束,買受人或被授權利用人不得將去識別化資訊再行揭露予第三方。   「AB-713號法案」亦要求進行CCPA所涵蓋販售或揭露去識別化病患資訊的企業,其隱私政策聲明應納入以下內容: 將出售或揭露去識別化病患之資訊; 採用HIPAA所允許如專家法(Expert determination)或安全港法(Safe harbor)等之何種方式,進行病患資訊之去識別化。   整體來說,「AB-713號法案」讓CCPA的規範稍加鬆綁,明確排除CCPA對特定去識別化資訊之適用,並擴張對研究行為之豁免範圍,在處理上有更多彈性,惟同時也要求企業須充分揭露其個人資料處理原則。

美國「人工智慧應用管制指引」

  美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。

TOP