德國數位經濟2017監測報告及建議

  德國經濟與能源部於2017年12月公布數位經濟2017監測報告,就ICT及網路經濟的表現和競爭力統計各產業數位經濟程度,並針對德國數位轉型現況及挑戰進行分析並提出相關建議。

  報告資料指出, 在六大創新應用潛力的部分,14%的企業已投入工業4.0改造,集中於機械製造業,數量有逐步上升趨勢;物聯網應用則以服務業居多,特別是知識密集型服務提供者;33%的企業有提供智慧服務,以客戶為導向的企業,例如資通訊業、金融保險業,使用比例更為明顯;19%企業開始利用巨量資料,多集中於大企業或先進產業;11%企業有利用機器人及感測器;人工智慧則尚處於起步階段,而使用者多集中於資通訊產業。就上述資料顯示,推動數位轉型尚待加強。另外,今年監測報告聚焦「數位聯網及合作」議題,結果顯示,約六成的企業與其商業客戶有進行數位聯網,而只有約四成的公司與新創公司有合作,因此尚有許多創新潛力尚未得到充分利用。

  國際數位經濟排名第六,落後美國、南韓、英國、日本、芬蘭。在獲得風險資本可能性的表現最佳,整體創新能力也處於相對領先地位,惟電子化政務服務較為落後,有待加強。在關鍵政策需求部分,以寬頻建設促進政策、創建數位化友善法律框架,以及獲取創新基礎的公共知識最受矚目。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 德國數位經濟2017監測報告及建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7950&no=57&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
南非提出個人資料保護法草案

  南非共和國議會在2013年8月22日通過了個人資料保護法修正案(PROTECTION OF PERSONAL INFORMATION BILL),該法案已由總統Jacob Zuma簽署正式成為法律,這也是南非首次全面性的個人資料保護立法 。   該部立法目的在於為促進個人資料的保護,建立全面性的個人資料保護原則。此次提出多項修正,包括 : 1. 設立獨立法人監察機構作為獨立且公正的執行個人資料保護法上職務及權力。 2. 公、私部門僅在特定情形時方可處理個人資料。 3. 蒐集個人資料必須提交予前述獨立法人監察機構。 4. 限制蒐集兒童個人資料,並將哲學、信仰、宗教,種族、民族血統,工會會員,政治觀點,健康,性生活或犯罪前科列為特種個人資料,並加以限制蒐集。 5. 需要處理個人資料者,必須落實保護措施,以保護個人資料為完整之狀態。 6. 發生個人資料外洩情形時,必須通知受影響的當事人以及前述獨立法人監察機構。 7. 要求公、私部門均需指定專責個人資料保護人員。 8. 透過自動傳呼裝置行銷需受到一定程度之限制。 9. 限制跨境傳輸時,限制傳輸收受方必須是至少具備與南非相同個人資料保護水準之區域。   南非之個人資料保護法通過後,對於消費者保障係又提升至另一層次,然該法之施行會對企業造成的衝擊,以及消費者是否可以在修法後獲得實質上的保障,仍待觀察。

英國無線電頻譜管理改革政策(上)-政策源起與目標

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

英國「數位紅利」頻譜管理政策簡介

TOP