歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。
指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。
指引的主要內容包括:
個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。
禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。
GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。
工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。
對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。
「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。
工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。
在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。
本文為「經濟部產業技術司科技專案成果」
FDA於今年(2012年)4月12日分別發布了兩項有關於評估應用奈米科技於化妝品及食物影響之產業指引草案(draft guidance)。其中就奈米科技應用於食品(以下簡稱奈米食品)之影響,FDA於「產業指引草案:評估包括使用新興科技在內之重要製程,改變對食品原料、與食品接觸物質及食品色素安全性及法規狀態之影響」(Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food Ingredients and Food Contact Substances, Including Food Ingredients that are Color Additives,以下簡稱新興科技衍生食品產業指引草案)中,對於食品製造商應採取哪些步驟以證明使用奈米科技之食品及食品包裝之安全性,有較為具體之說明。 於新興科技衍生食品產業指引草案中,明確表示奈米科技為此文件之涵蓋範圍,惟其聲明將奈米科技納入文件並不代表FDA認定所有內含奈米物質之產品皆屬有害,僅說明FDA認為依據奈米食品之特性,應進行特別的安全性評估以確保安全。文件中也強調,FDA對於食品製程中應用奈米科技所作之考量,與應用其他科技於食品製程者無異,並認為應用奈米科技所產出之最終產品,在原定用途之使用下,其特性及安全性與傳統製程產出者相同。 針對奈米食品之安全性評估,新興科技產業指引草案中指出,應就該食品所使用物質於奈米尺寸下之特性為其判斷基礎,而有可能必須進一步檢驗此等特性之影響,例如該物質對於生物可利用率及其於器官間運輸之影響等。此外,文件中亦提及FDA於過去針對食品添加物、色素及與食物接觸物質之化學及技術數據所作成之產業指引,於此應同樣被遵守,而將奈米食品所涉及與安全性相關之文件提供給主管機關。而FDA也將持續地向產業提供諮詢服務,以確保產品之安全性。 由FDA所發布之相關產業指引觀察,縱使FDA仍秉持美國對於奈米科技不具危害性之基本立場,其仍透過強化安全評估之科學工具及方法,以審慎之態度來取得大眾對於此類產品安全之信任。
何謂「標準必要專利」?標準必要專利(standards-essential patents,SEPs)是國際標準組織所採行的一種專利運用模式,主要係為了使標準共通技術普及之同時平衡專利權人之利益,將技術發展中重要的標準共通技術結合專利保護,同時均要求專利權人須簽署FRAND(Fair,Reasonable and Non-discriminatory)條款,以公平、合理、無歧視之原則收取合理數額之專利授權費供標準化組織成員有償使用。然而,因專利本身即是一種合法壟斷,是以標準必要專利之授權模式可實現利益最大化;但涉及到具高度共通性又難以迴避的技術時,應當避免少數專利權人濫用專利權和市場壟斷。因此,專利權人和被授權人之間,對於收取合理專利授權費之議題,在一直無法取得共識之下,往往訴諸法律解決。從美國聯邦法院涉及標準必要專利侵權之訴訟案例,可看出美國針對標準必要專利目前主要有下列幾種趨勢:(1)合理之專利授權費以該技術佔產品元件之比率計算;(2)標準必要專利之授權費金額逐步降低;(3)專利權人必須先進行授權流程(4)不能直接申請禁制令。
簡介人工智慧的智慧財產權保護趨勢近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)