德國法院判決Google沒有進行事先審查網站內容之義務

  德國最高法院在2018年2月27日判決,Google在搜尋結果連結顯示之前,並無須確認該網站是否存在毀謗性言論,亦即,Google沒有義務事先審查搜尋結果中連結的內容。

  此案件的背景是由兩個受到網路言論攻擊的人所提出,其主張為防止其他網路使用者攻擊他們言論的網站出現在Google搜尋結果的連結上,因此希望Google其中的一個部門—Alphabet公司,設置搜尋過濾器,就用戶曾經在網站上發表過不良評論以及損害賠償的相關資訊不會在未來的搜尋結果出現。

  本案涉及關於「被遺忘權」(“Right To Be Forgotten”)的討論,所謂被遺忘權是由2014年5月,歐盟法院(ECJ)所作成之裁定,即人們可以要求Google和微軟Bing(MSFT.O)等搜尋引擎於搜尋人名出現的網頁結果中,刪除不適當或不相關的訊息。

  本案中,對於Google沒有對搜尋結果進行過濾,Google是否因此有侵害被遺忘權之爭議,德國最高法院表示,搜尋引擎經營者僅須於收到明確且具識別性侵犯個人權利的通知時,採取相關行動即可,並毋須事先檢查該網站之內容是否合法。蓋立法者及社會皆普遍認為,若將搜尋引擎審查網站的內容定為其一般性義務,則其商業模式的本質將備受嚴重質疑,且又由於數據具有管理上的困難性,若無此類搜尋引擎的幫助,人們不可能在網路上獲得有實質有意義的使用,因此搜尋引擎不須將此列為其義務。

相關連結
你可能會想參加
※ 德國法院判決Google沒有進行事先審查網站內容之義務, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8016&no=64&tp=1 (最後瀏覽日:2024/11/21)
引註此篇文章
你可能還會想看
FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

日本企業陸續向開發中國家提供環保技術援助

  應中國鋼鐵工業協會(以寶山鋼鐵為首)之請,日本鋼鐵聯盟擬提供中國削減溫室氣體的環保技術。中國雖不在京都議定書約束的國家之列,急遽的經濟成長所造成的空氣污染已帶來嚴重的環境問題,日本鐵鋼聯盟於24日的委員會上正式決定技術援助的計劃,近期內將與中國討論相關細節。   日本鋼鐵業界自1990年度起,平均每年投注1200億日圓開發該產業的環保技術,目前業界「回收熔爐熱能轉供發電等能源節約技術」已經領先全球。日本鋼鐵業界2003年度換算成二氧化碳的溫室氣體排放量雖然已較1990年度減少6.4%,仍然未能達到京都議定書中要求減量10%的目標。   利用京都議定書的「彈性機制」,業界也可藉由跨國的技術援助,將國外減少的溫室氣體額度直接計入本國的額度之內。目前為止由日本政府核可的「彈性機制」計劃共15件,今年一月甫通過鹿島建設公司將馬來西亞廢棄物處理場的沼氣轉為電能的計劃,除此之外,東京電力公司和住友商事都分別在智利和印度有相關的環保計劃。

英國身份證立法-我國之借鏡?

TOP