德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。
德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。
例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何?
本份指南則提出六項建議:
本文為「經濟部產業技術司科技專案成果」
歐盟執委會於2010年5月6日公布790-862 MHz頻段(簡稱800MHz)的統一技術規格決定(Commission Decision 2010/267/EU on harmonised technical conditions of use in the 790-862 MHz frequency band for terrestrial systems capable of providing electronic communications services in the European Union)。會員國以為,與其單純保留800MHz給地面廣播系統使用,不如開放該頻段供網路使用,故會員國必須立即根據決定,以一致性的技術規格,讓800MHz頻段可以供無線寬頻接取技術使用。 執委會下一步將對數位紅利的使用提出規劃草案,草案內容並將成為預計於6月底公布的「2011-2015年無線頻譜政策方案」(Radio Spectrum Policy Programme 2011-2015)的一部份。各界預期,該草案有可能包括制訂一個所有會員國都必須釋出800MHz供寬頻服務發展的實施日期。
美國最高法院判決:向境外供應侵權產品若為單一元件不構成侵權行為美國最高法院於2月22日針對Life Technologies Corp. v. Promega Corp.一案作出判決,對於向美國境外供應多元件侵權產品的其中單一元件,並不構成35 U.S.C. 271(f)(以下稱271(f))的侵權責任。 美國醫療生技公司Promega控告同業LifeTech侵害其專利,指稱LifeTech所製造的基因檢測套件中之組裝元件中之DNA聚合酶元件(Taq polymerase)是由美國製造,運送到英國組裝後,再販售至世界各地。Promega認為LifeTech將單一元件輸出至英國組裝的行為,已違反271(f)(1)中的「境外組裝」規定。 該案爭點之一在271(f)(1)之詮釋及適用爭議:「一當事人未經授權自美國向境外供應專利中全部或相當部份("all or a substantial portion")之元件,若元件尚未組合,而在美國境外將主要部分加以組合,如同其在美國境內將該元件組合,應視為侵權者而負其責任。」 地院認為271(f)(1)中的"all or a substantial portion"不符合本案只提供單一元件之情形,判定侵權不成立。不過CAFC認為地院有不當解釋271(f)(1),故認定LifeTech所販售的聚合酶元件符合271(f)(1)規定的"substantial portion"應解釋為"重要的部分",故推翻一審判決,判定侵權成立。 最高法院解讀271(f)(1)時,將其中的"substantial portion"解釋為"大量"或"多的",因此認定所述"單一元件"並不構成271(f)(1)中的"substantial portion",原因為單一元件並非法條所指的"多量"。 最終,最高法院認為,本案被告僅供應"單一元件"在境外組合,因此並不構成35U.S.C.271(f)(1)法條所定義之侵權行為。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
歐盟提出雲端服務層級標準化指導原則2014年6月26日歐盟執委會提出電信網路層級服務協議標準化指導原則(Cloud Service Level Agreement Standardisation Guidelines)。網路服務提供業者通常會與消費者簽訂契約,內容約定有服務之等級,稱之為電信服務層級契約(SLAs),在雲端運算服務中,通常橫跨不同的管轄領域,適用的法律要件亦產生變化,而在雲端部分所儲存的個人資料保護部分尤其重要。不同的雲端服務與模式所需要的協議約定亦不同,這些都增加訂定的複雜性。 指導原則之提出將幫助專業的雲端服務業者在契約訂定時應該注意的內容,其中主要相關項目包括: 1.雲端服務的可利用性與真實性 2.從雲端服務提供業者中可取得服務的品質 3.安全層級 4.在雲端中如何妥善管理資料 指導原則首先明定原則,以做為雲端運算服務契約之參考。並同時針對不同的名詞定義解是,亦針對不同的契約與法律議題說明,包括業者在依據所訂定的契約中處理個人資料時,應符合歐盟資料保護之規範。 在指導原則提出之後,執委會將與雲端使用者,特別是一些小型企業進行檢視,後續並朝向通過國際ISO之認證。