德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。
德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。
例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何?
本份指南則提出六項建議:
本文為「經濟部產業技術司科技專案成果」
美國專利商標局(United States Patent And Trademark Office, USPTO)於2024年5月10日提議37 C.F.R §1.321修法草案並徵求公眾意見,旨在針對「非法定重複專利」(Nonstatutory-type double patenting)加強專利權「期末拋棄聲明」(Terminal Disclaimer)之要求,以減輕專利叢林現象。 專利權期末拋棄聲明係為避免專利申請人對於申請中,或已取得專利權之前申請案,利用些微變化再次申請專利,構成非法定重複專利,藉此延長專利期限。故現行規定要求於後案申請時應聲明專利權期限與前申請案同時到期,否則將不核准專利之申請。 USPTO提議於聲明中新增一項要求,亦即申請人應聲明後案申請之專利未藉由期末拋棄聲明直接或間接地綁定無效專利,否則同意所申請之專利無法執行(enforceable)。換言之,與後案申請專利所綁定的前案專利,若已被美國聯邦法院或USPTO判定為不具有專利性、專利無效,或是因技術實行上困難而放棄專利者,則透過專利權期末拋棄聲明綁定之專利將全部無法執行。藉此盼能有效去除產業競爭對手間濫用專利制度而建立龐大專利組合之行為模式,並促進研發創新和公平競爭。 此項修法草案被美國法學界認為是針對「藥品專利」而來,亦即USPTO欲藉此回應美國拜登政府致力打擊藥價之政策,並減輕長期受到關注之藥品專利叢林現象,以促進學名藥進入市場,達到降低藥品價格之目的。
淺談我國經濟部能源局建築能源效率管制措施淺談我國經濟部能源局建築能源效率管制措施 科技法律研究所 2013年3月25日 壹、事件摘要 行政院2012年9月份核定「經濟動能推升方案」,擘畫台灣2030年經濟藍圖。在該方案中,乃明示能源永續發展的重要性。經濟部能源局於2013年3月份公告修正「指定能源用戶應遵行之節約能源規定」,針對22,349家空調設備用電大之觀光旅館、百貨公司、零售式量販店、連鎖超級市場、連鎖便利商店、連鎖化妝品零售店、連鎖電器零售店及銀行、證券商、郵局、大眾運輸場站及轉運站等合計11類業者,實施「冷氣不外洩」、「禁用白熾燈泡」及「室內冷氣溫度限值」規定,預估每年可節省2,158萬度電。 經濟部能源局表示,11類服務業100年總用電量約71億度,其中空調用電量約占41%。觀鄰近中國大陸、南韓、日本政府均已針對營業場所訂有夏季室內空調溫度,並由公部門帶頭示範。台北市政府自2011年起亦開始推動「營業及辦公場所室內冷氣平均溫度須保持在攝氏二十六度以上」規定,實施至今有效促使約700家能源用戶(契約容量超過300kW)之空調均溫維持於二十六度,實施結果由99年不合格率32.3%,至101年不合格率降低為4.9%,顯示執行該規定有效可行。 貳、重點說明 經濟部能源局新修正公告之「指定能源用戶應遵行之節約能源規定」,乃著眼於建築物內部耗能之管制,而該管制措施乃近年來歐、美等先進國家亟力促進推動的建築能源效率(energy efficiency)議題。 參、事件評析 據統計,建築物耗能占人類經濟活動總碳排放量40%,而台灣地區舊建築物約莫占整體建築物97%,如何有效提升舊建築物本身之能源效率為重要課題。查內政部建築研究所之相關研究,建築物節能主要含括三個面向 - 外殼節能、空調節能及照明節能,因建築外殼節能為內政部營建署之管轄範疇,故經濟部能源局僅就建築物之空調節能及照明節能進行管制,本文將以美國聯邦能源部(Department of Energy, DOE)相關之法制政策為比較探討。 美國聯邦政府於2011年2月份正式啟動「更佳建築倡議」(Better Building Initiative),於2012年12月份能源部(Department of Energy, DOE)發布之進度報告(Progress Report)指出,目前建築能源效率存有若干投資障礙,第一,尚缺少能源效率投資成本節省之實證數據;第二,尚缺少潛在市場和技術解決方案之相關資訊;第三,能源效率作為商業最佳實踐尚未普遍被接受。基此,能源部將致力於促進能源效率投資並強化聯邦公部門示範作用等手段。 在促進能源效率投資上,因市場尚缺乏相關數據資訊,難就能源效率之市場價值進行驗證;將研議相關機制,作為未來融資和建築物改善的基礎。另在聯邦公部門強化示範作用上,將透過聯邦能源管理計劃(Federal Energy Management Program, FEMP)和節能績效契約(Energy Savings Performance Contract, ESPC),持續強化能源技術服務公司(Energy Service Companies, ESCO)進行聯邦建築物節能效益之提升和擔保。 此外,於該倡議旗下之「更佳建築挑戰」(Better Building Challenge)乃鼓勵民間部門之參與。以美國百貨業龍頭梅西百貨(Macy)為例,其承諾將透過能源資訊系統(EMS)之使用、觀察及分析,找出佔地一億七千九百萬平方呎的商業樓地板面積之關鍵能源機會。照明方面,該公司也以超過一百萬盞LED燈之替換與重點照明,在過去三年內減少了百分之七十的照明能源消耗。 綜上觀察,我國能源局新修正「指定能源用戶應遵行之節約能源規定」下「禁用白熾燈泡」規定,乃禁止十一類業者使用二十五瓦特以上之白熾燈泡於一般照明用途,近似於美國梅西百貨於「更佳建築挑戰」下所承諾之LED重點照明之實踐。此外,借鏡美國經驗,我國宜研議建立起台灣建築能源效率數據資訊之系統資料庫,助於未來舊建築改善市場之發展。
日本雅虎公布個資刪除標準自從歐洲法院判決谷歌(Google)應該尊重當事人的「被遺忘權」,從搜尋結果移除敏感、不當或過時的資訊聯結後,日本雅虎(Yahoo!)於2014年11月組成了專家小組,針對民眾請求刪除網路搜尋結果時,搜尋引擎應該在何種程度上及如何給予回應等議題進行討論,並於2015年3月30日公布了個資刪除標準,隔日起生效。 日本雅虎表示,當搜尋某人的姓名,出現其病歷、過去曾經犯下的輕罪等敏感性資訊或明顯侵害個人權益的資訊(如非公眾人物的地址、電話號碼等)時,當事人可以請求刪除搜尋結果,但在決定是否准許當事人請求前,雅虎將先行檢查當事人係屬成年人、弱勢族群或公眾人物(包括國會議員、公司高階主管及影視圈名人等)。至於那些被強烈懷疑為非法的性愛照片,如兒童色情或報復性色情(未經本人同意而散播的親密照片)等,將主動予以封鎖而無法瀏覽。 由於線上文字及圖片相當容易複製,不願意公開的資訊被公開在網路上而無法移除時,往往造成當事人心理上極大的痛苦,於搜尋階段便設法封鎖有問題的資訊,能夠有效地防止因資訊傳播而帶來的傷害。但從言論自由及知的權利的角度出發,某些資訊的揭露本身即具有公益色彩,應該適度限制當事人移除資訊的請求。日本雅虎率先公布個資刪除標準,預料將帶動亞洲入口網站對於隱私保護的重視。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現