日本內閣網路安全中心(内閣サイバーセキュリティセンター)於2018年7月25日發布關鍵基礎設施資訊安全策略第4次行動計畫修正版。此次修正重點,係將「機場(空港)」新增為關鍵基礎設施領域,其目的在於確保機場安全、提供機場乘客與相關人員快速且正確的資訊、避免飛機行李的檢查與運送停止或延遲。
而確保「機場」資安的關鍵基礎設施事故報告與服務維持的指南,則為2018年4月1日發布之「確保機場資訊安全的安全指南第1版(空港分野における情報セキュリティ確保に係る安全ガイドライン第1版)」。
該確保機場資訊安全的安全指南,係參考日本於2015年5月發布之關鍵基礎設施資訊安全對策優先順位參考指南(重要インフラにおける情報セキュリティ対策の優先順位付けに係る手引書第1版)制定,以規劃(Plan)—執行(Do)—查核(Check)—行動(Action)的觀點建立管理與應變對策,將IT障礙分為故意(接收可疑的郵件、內部員工的故意行為、偽造使用者ID、DDos攻擊、非法取得資訊等)、偶發(使用者操作錯誤、使用者管理錯誤、外部受託方的管理錯誤、機器故障、執行可疑的檔案、閱覽可疑的網站、系統的脆弱性、受到其他關鍵基礎設施事故的波及)、環境(災害、疾病)等三大原因,並訂定日本主要的機場與機場大樓業者的責任範圍、適用的個資保護制度、IT安全評估與認證制度、資安稽核制度、資安管理政策及資安控制措施的建議事項。
國際藥品採購機制(UNITAID)為協助開發中國家取得價格可負擔的人類免疫缺陷病毒(Human Immunodeficiency Virus,HIV)及愛滋病(Acquired Immuno-deficiency Syndrome,AIDS)用藥,2009年12月時即宣布成立「藥品專利聯盟基金會」(Medicines Patent Pool Foundation,MPPF),提供5年約442萬美元作為促進各大藥廠投入專利於所組之藥品專利聯盟(Medicines Patent Pool,MPP)之經費。去(2010)年7月,MPPF在瑞士登記成立後,立即展開與藥廠協議將其專利授權給MPP,以及同意MPP再授權給其他藥廠生產製造相關藥品之行動。 經過近1年努力,今(2011)年7月,MPPF終於與第一家美國藥廠Gilead Sciences達成授權協議,將旗下的Tenofovir(此為B型肝炎治療用藥)、Emtricitabine、Cobicistat、Elvitegravir及前述藥品固定劑量之單一藥丸產品Quad,授權給MPP再利用。接下來,MPP預計還要繼續向Abbott Laboratories、Boehringer-Ingelheim、Bristol-Myers Squibb、Merck & Co、Roche、Tibotec / Johnson & Johnson及Viiv Healthcare等藥廠爭取授權。 根據Gilead藥廠授權協議,MPP得以無償、非專屬、不可轉讓方式製造、使用、邀約販賣及販賣前述藥品,並將之再授權給印度學名藥廠;合法的被再授權人(Sublicensee)得出口及販賣其藥品,並支付3-5%權利金,但被再授權人若是為12歲以下兒童病患開發液體狀、可分散之兒科醫學劑型配方時,則可例外無須支付權利金。雖然Gilead藥廠之授權協議在內容上仍有諸多值得檢討之處,例如只限授權給印度學名藥廠、提供臨床試驗階段之Cobicistat、Elvitegravir及 the Quad藥品,雖確實可使開發中國家最快速度享受到最新的有效藥,但不免會引起是否涉及開發中國家新藥人體試驗之揣測。但無論如何,MPP成功獲得Gilead藥廠之授權,除打破外界先前對於MPP能否實際說服商業藥廠為公益目的加入之質疑,藉由雙方所訂之對象、範圍、權利金與例外等授權條件,更能明確看出MPP日後實際運作將採之方式。
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。 於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。 如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
英國與美國為人工智慧安全共同開發簽署合作備忘錄英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。 此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動: 1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。 2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。 3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。 4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。 5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。 換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。
美國交通部公布車輛與基礎設施間聯網指引,強化車聯網時代行車安全美國交通部(U.S. Department of Transportation)部長(時任)Anthony Foxx於2017年1月19日公布「車輛與基礎設施間聯網指引」(Vehicle-to-Infrastructure (V2I) Guidance),旨在透過加速車輛與基礎設施間通訊系統之布建,增進車聯網時代的行車安全與機動性。同時,本指引也將補充交通部於2016年12月所公布之車輛間通訊規則草案,後者最重要的目的是透過車輛間通訊技術的管理,提升駕駛人對於碰撞與潛在危險的認知以預為因應。透過車輛與基礎設施間聯網指引,交通部聯邦公路管理局(Federal Highway Administration, FHWA)將協助運輸系統的所有人與操作人進行相關技術的布建,並讓各運輸事業主管機關與收費道路管理機關,了解布建相關技術之決策所可能造成的影響,並為相關技術的未來發展與聯邦挹注資金的利用(因為多數的V2I能夠整合於既有之ITS設備或道路周邊基礎設施,因此符合聯邦對ITS的補助條件),做好準備。 車輛與基礎設施間之通訊,是車聯網環境的重要構成部分,透過硬體、軟體、韌體、以及無線通訊系統,相關資料不但能在車輛間進行動態傳輸,亦得在車輛與道路基礎設施間進行傳輸。聯邦公路管理局局長(時任)Gregory Nadeau表示:「除了增進行車安全,車輛與基礎設施間之通訊技術能提供相當大的機動性,並為整體環境帶來益處。車輛與基礎設施間之通訊與聯網,以及諸如隱私與互通性等更大的挑戰,都將由本指引作為展開全國性對話的起點。」車輛與基礎設施間聯網(V2I)可謂智慧運輸系統(Intelligent Transportation Systems, ITS)的次世代技術,其能捕捉車輛所產生的交通資料,並向車輛無線傳輸例如行車建議等的資訊,讓駕駛人能夠掌握與安全性、機動性、甚或是與整體環境相關的所有情況。 車輛與基礎設施間聯網指引的內容,目前包括聯網車輛運輸衝擊規劃初階報告(Connected Vehicle Impacts on Transportation Planning Primer)、聯網車輛運輸衝擊規劃桌上參考手冊(Connected Vehicle Impacts on Transportation Planning Desk Reference)、技術備忘錄第2號:聯網車輛規畫流程與產品及利害關係人角色與責任(Connected Vehicle Planning Processes and Products and Stakeholder Roles and Responsibilities)、技術備忘錄第3號:新型與強化型分析工具、技術、與資料之需求分析(Analysis of the Need for New and Enhanced Analysis Tools, Techniques, and Data)、技術備忘錄第6號:運輸規劃導入互聯車輛所需之技能與專業知識(Skills and Expertise Required to Incorporate Connected Vehicles into Transportation Planning)、新型與強化型分析工具、技術、與資料之需求分析:公路容量手冊簡介(Highway Capacity Manual Briefing)、新型與強化型分析工具、技術、與資料之需求分析:交通系統模擬模式簡介(Briefing for Traffic Simulation Models)、以及聯網車輛運輸衝擊規劃:社區關懷案例研究(Outreach to Planning Community)。 另外,為了讓執照核發條件透明化,相關的典範實務(best practices)也能為各政府與民間組織機關近用,以布建聯網車輛專用短程通訊(Dedicated Short Range Communications, DSRC)路邊基地台(Roadside Units, RSU)與相關服務,用以支援車輛與基礎設施間之聯網應用,亦針對執照持有人訂有指引(Guide to Licensing Dedicated Short Range Communications for Roadside Units)。