日本總務省公布AI運用原則草案

  日本總務省於2016年10月起召開AI聯網社會推進會議(AIネットワーク社会推進会議),該會議於2018年7月17日公布「報告書2018─邁向促進AI運用及AI聯網化健全發展」(報告書2018-AIの利活用の促進及びAIネットワーク化の健全な進展に向けて-),提出「AI應用原則草案」(AI利活用原則案)。

  「AI應用原則草案」制定目的在於促進AI開發及運用,藉由AI聯網環境健全發展,實現以人為中心之「智連社會」(Wisdom Network Society:WINS),其規範主體包括︰AI系統利用者、AI服務提供者、最終利用者(以利用AI系統和服務為業)、AI網路服務提供者、離線AI服務提供者、商業利用者、消費者利用者、間接利用者、資料提供者、第三者和開發者;草案內並根據上開規範對象間關係,整理各種AI運用情境,最終提出「適當利用」、「適當學習」、「合作」、「安全」、「資安」、「隱私」、「尊嚴自律」、「公平性」、「透明性」、「歸責」等十大AI應用原則。總務省表示將持續檢討完善AI應用原則草案細節,以「利用手冊」等形式公布,提供民眾參考。

  行政院於2018年初推出「台灣AI行動計畫」,將整合5+2創新產業方案,由相關部會協助發展100個以上的AI應用解決方案,日本總務省所整理之AI應用情境與研提之應用原則,或可作為我國未來推動AI發展之參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 日本總務省公布AI運用原則草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8088&no=57&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
紐西蘭通過數位身分服務信任框架,如經簽署將於2024年施行

紐西蘭眾議院(New Zealand House of Representatives)於2023年3月通過數位身分服務信任框架法案(Digital Identity Services Trust Framework Act,以下稱本法案),旨在建立數位身分信任制度。本法案為數位身份服務商提供自願認證計畫,政府將授予符合信任框架規範之服務商認證。數位經濟與通訊部(Minister for the Digital Economy and Communications)指出,數位身份目前缺乏一致的辨識標準,而信任框架的訂定將有助於緩解身份盜用、詐欺與隱私資料外流之風險。茲所附言,本法案如經總督簽署將於2024年生效。 蓋紐西蘭針對政府數位化與數位轉型已擬定多項計畫、策略,其中包含建構安全、分散且以用戶為中心的數位身份管理制度,而本法案的通過與施行將為上述制度奠定基礎,其特性說明如下: 一、去中心化資料儲存:數位身分資料傳遞是由資訊提供者(如政府、銀行或公用事業公司等持有個人資訊者)、用戶(資料所有者)與服務商三方形成連結網絡,而非源自集中保存身分資料之數據資料庫。 二、以用戶為中心:若用戶有驗證或提供身分資訊之需求,經過政府認證符合信任框架規範的服務商,可在用戶的許可與請求下,傳送相關資料給用戶指定之第三方(需求者)。 三、非強制性機制:紐西蘭政府將不會強制服務商、用戶及需求者使用依本法案所建構之數位身分信任機制。 四、交互認證:基於紐西蘭與澳洲的單一經濟市場議程(Single Economic Market, SEM),本法案將符合對應英國、澳洲與加拿大有關數位信任之規範,減少因法規差異產生之成本和歧視。

Me Too醫療器材上市前許可指引

  美國食品藥物管理局(The Food and Drug Administration,簡稱FDA)於2014年7月更新並公布了醫療器材上市前許可(premarket notification)的指引(guidance)(該指引名稱為510(k) Program: Evaluating Substantial Equivalence in Premarket Notification Guidance for Industry and Food and Drug Administration Staff,以下簡稱510(k)指引),針對醫療器材業者將其生產製造的醫療儀器申請上市的過程做了新的調整及規範。此指引主要是讓業界及FDA人員了解FDA在評估醫療器材申請過程中所評估的因素及要點,並藉由FDA在審查醫療器材的實務規範及審查標準來當作標準並訂定510(k)修正,以提高510(k)評估的可預測性、一致性及透明度,讓業界有一定的遵循標準。雖然FDA的指令文件並不受法律強制規範,但可供醫材業者更清楚FDA所重視的審查程序及內容。   歐盟對醫療器材上市前之審查亦有相關指令,分別為一般醫療器材指令(Medical Device Directive,簡稱MDD)、活體植入醫材指令(Active Implantable Medical Devices Directive,簡稱AIMDD)及。歐盟規定醫療器材在上市前,必須符合上市前所規定之內容以正當在歐盟、歐洲經濟地區(European Economic Area)及瑞士市場販售使用。然而特別的是,不同於美國上市前的醫療器材由主管機關FDA進行審查,歐洲藥物管理局(The European Medicines Agency of the EU)並不參與醫療器材的審核程序,而是交由歐盟會員國的私人認證機構對醫療器材做評估。

新加坡以親商政策及稅務優惠等措施提升新創生態系競爭力位居亞洲第一

全球創新研究平台StartupBlink 於2025年5月20日發布《2025全球新創生態系指數》(Global Startup Ecosystem Index 2025),分析與評比全球118個國家及1,473座城市新創生態系之數量、品質與商業環境。其中新加坡自2021年起全球排名不斷攀升,於2022年起佔據亞洲第1之寶座,截至2025年更躍升全球第4,僅位居美國、英國及以色列之後。 新加坡新創生態系之競爭力優勢如下: 1、穩定金融環境:企業與銀行具備充足流動資本與健康償債能力。 2、親商環境制度:新加坡政府以全球創業者計畫(Global Founder Programme, GFP),提供便利簽證、產業人脈引介等多方面支持,吸引經驗豐富之創辦人至新加坡創業。 3、優惠稅務措施:因應全球最低稅負制度,增訂「可退還投資抵減」(Refundable Investment Credit, RIC),針對促進新加坡經濟或提升新興產業成長為重大投資之公司,可扣抵企業應納之稅負。 4、推動產學合作:新加坡學術界除了積極培育高素質人才進行研發外,亦提供專業知識諮詢、產業交流機會,及海外業務拓展之協助,積極推動產學合作,使校園成為創業之溫床。 2025年全球新創生態系面臨兩大衝擊,即AI技術的崛起與迅速更跌,與複雜多變的地緣政治,促使政府須在詭譎的全球局勢中,因應情勢調整國家發展策略,推動新創持續成長。而新加坡政府及學術研究機關均致力推動新創政策,加上充足的基礎設施,吸引大量國際人才與投資,進而促使該國新創生態系之蓬勃發展。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP