「促進整合產官學共同研究的大學概況調查書(産学官共同研究におけるマッチング促進のための大学ファクトブック)」為日本經濟產業省與文部科學省所共同設置的「促進創新產官學對話會議」議定後向外提出,期待藉此使企業更容易理解大學的產官學合作現狀,進一步實現正式的產官學連攜活動。
該概況調查書的先行版中收集整理了各大學整合產官學連攜的實績等資訊,2018年發布的正式版則統整日本327所大學的情報,擴充並更新了該概況調查書的內容,包含:1.產學連攜相關的聯絡窗口資訊等;2.產官學連攜活動的配套方針與往後期待重點化的事項;3.產學連攜之本部機能的相關情報;4.面向正式共同研究的配套措施,如平均交涉期間、跨領域型共同研究;5.各大學之專精領域及其實例;6.資金、資產及智慧財產相關連的持有使用狀況;7.大學發起的創投事業數及其支援體制;8.混合僱用制度的狀況。
本文為「經濟部產業技術司科技專案成果」
根據全球資訊網基金會(World Wide Web Foundation)及英國開放資料協會(Open Data Institute)指出,全球77個國家正進行Open Data政府開放資料政策,但實際運作上,各國政府提供公眾近用之資料集佔不到全世界政府資料的10%,呈現各國Open Data政策實行還有很大進步空間。 全球資訊網基金會與英國開放資料協會所合作的網絡平台-政府開放資料研究網絡(Open Data Research Network),針對各國政府開放資料執行狀況進行評比並提出Open Data Barometer研究報告。此報告指出,英國政府開放資料執行及成效排名第一,其次排名陸續為美國、瑞典、紐西蘭、丹麥、挪威。除此之外,專以倡導開放知識、資料、內容的國際非政府組織,開放知識基金會(Open Knowledge Foundation),則提出基於Open Data可用性及近用性進行70個國家的排名,英國仍是第一名,其次為美國、丹麥、挪威、荷蘭。從上述兩項研究報告中,英國在Open Data政策落實的成效受到高度肯定,而歐美地區仍在Open Data政策實行上領先世界其他地區的國家。 Open Data Barometer研究報告指出,目前各國政府傾向不提供具潛在爭議性的政府資料,但此類資料往往具再利用價值,例如政府財政預算及交易資料、公司登記、土地登記等相關資料。全球資訊網創始人Berners Lee表示,政府及企業不應考量提供資料集而無法收取費用,或有意掩蓋政治敏感之資料來保護政治利益,而對於公布會造就人民生活的重大進步但具爭議性之資料集,感到卻步。 目前多數國家開放資料之機器可讀性資料與資料集之免費授權(Open License)皆少於7%,報告中說明全球資料集實際可用性仍偏低,亦發現各國提供資料之收費不僅沒有效率,資料再利用授權關係也不明確,使得企業及使用者處在法律不確定之風險中。 全球面對開放資料的進展雖已有初步成效,但成功經驗仍集中在歐美國家,世界上其他國家在開放資料的可用性及近用性,仍與歐美國家有顯著差距,為能促進全球人民生活福祉及活絡商機,各國政府應更積極地執行開放資料政策,並持續改進。
日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。
菲律賓就共乘服務發布新法令,針對以APP招車及其相關營運進行明確規範菲律賓於今(2015)年05月13日發布共乘服務(如:Uber)新法令,成為全球第一個針對以APP招車及相關營運進行明確具體規範的國家。在該法令規範之下,車齡在七年以下之私人轎車、休旅車及小貨車得經如「優步」(Uber)或GrabCar等共乘服務公司之認證合格後參與營運。 菲律賓交通部長阿巴亞(Joseph Emilio Abaya)說明,根據全球資料庫 “Numbeo”公司之調查研究,由於首都馬尼拉(東南亞第二壅塞,僅次於印尼首都雅加達的城市)缺乏足夠的大眾運輸工具,故共乘服務有其需求及必要性。 「我們不應將共乘服務視為傳統計程車產業的損害者,而應該認為它可以提供更優質的服務、同時迫使傳統業者現代化及革新。」阿巴亞在本週就該規範即將施行的簡報中如此闡述。 總部設立於美國的「優步」(Uber),係全球最具價值之風險投資新創公司,估計市值400億美元。關於優步如何支付駕駛報酬、向乘客收取車資費用並確保其安全、以及違反交通法令規範等層面,業已在全球面臨諸多法律挑戰。共乘服務運用科技來連結市民利用其自有私家車與欲搭乘車輛之消費者,而傳統計程車經營者之忿怒則在於其毋須支付許可(執照)費、也毋須遵守當地相關規範。 優步考量到馬尼拉人口達1,500萬之眾,因此預期菲律賓將會是有利可圖的市場。優步菲律賓總經理Laurence Cua於接受路透社(Reuters)訪問時表示:「此次修法,係將消費者的安全置於優先考量,亦認同如優步這類型公司之價值,以及其運用科技改善城市運輸品質之能力。」 然而優步及其他同類公司發現:要在經濟快速成長的東南亞經營,未必是一件輕而易舉的事情。傳統計程車業者揚言要控告政府,以促其保護在馬尼拉攬客維生的27,000部計程車。 「世界各地政府均瞭解計程車業者投資多少於經營,卻僅有菲律賓的業者未受保護。」菲律賓全國計程車駕駛協會主席Jesus Manuel Suntay對路透社如是說。 根據日本獨立行政法人國際協力機構估計,馬尼拉因交通阻塞,每日生產力損失的價值高達5,700萬美元之譜。
美國科羅拉多州通過《人工智慧消費者保護法》2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。