英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年3月公布5G測試平台及試驗計畫(5G Testbeds and Trials Programme)中之都市聯網計畫(Urban Connected Communities Project)政策文件,將於英國大規模推展5G試驗。同年9月4日,數位部部長宣佈其5G試驗團隊正與西密德蘭郡聯合管理局(the West Midlands Combined Authority, WMCA)及相關產業夥伴合作準備正式商業案例,預計將於2019年推行第一個計畫項目。
本項目內容側重於醫療及汽車業,包含:
1. 透過流暢的視訊方式進行遠距醫療諮詢(Outpatient appointment)或緊急醫療情況之諮詢,而該視頻之內容除可回放外,與家人及看護間並可進行共享查看,以提升醫療照護之效率與品質。
2. 「聯網救護車」:醫療輔助人員得於事故現場即時獲得專家建議,例如與顧問或臨床專家進行視訊。並於救護車內即能傳送患者之即時資訊至醫院,使患者抵達醫院時能進行快速且妥適處理。
3. 即時傳輸公共巴士上之閉路電視(CCTV)畫面,以便立即採取行動制止反社會行為(anti-social behaviour)。
計畫將可獲得高達5000萬英鎊之資金,並於柏明罕、考文垂以及伍爾弗漢普頓(Birmingham, Coventry and Wolverhampton)設立試驗中心執行相關計畫。
本文為「經濟部產業技術司科技專案成果」
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
APPLE以違反DMCA法案追訴Psystar根據美國北加州聯邦地方法院之資料公佈,APPLE已於上週對“Mac Clone”(克隆機)廠商PSYSTAR追加控訴,指控PSYSTAR侵犯了APPLE的著作權和商標權,同時,亦違反了美國1998年通過之數位千禧年著作權法(DMCA - Digital Millennium Copyright Act)的規定。APPLE表示,尚有其他廠商涉及本案,但APPLE仍未公佈其他涉案廠商名單。 PSYSTAR總部位於美國佛羅里達州,今年4月其推出了安裝APPLE Leopard OS X作業系統的低價個人電腦。此“Mac Clone”(克隆機)標準版售價為399美元,高階版售價999為美元。繼今年7月APPLE對PSYSTAR提起法律訴訟後,11月26日又針對PSYSTAR推出的“Mac Clone”(克隆機)追訴其侵犯了APPLE著作權和商標權。 今年8月份,PSYSTAR曾反控APPLE,宣稱APPLE把Mac機種之硬體和Mac OS X作業系統實行捆綁銷售(Tying),已明顯涉及不公平競爭,並違反美國反壟斷法相應條款。APPLE於9月份已要求法院認定PSYSTAR該項反訴無效。該起訴訟的主審法官威廉•阿爾薩普(William Alsup)於11月18日已作出裁決,認定PSYSTAR對APPLE的反訴無效。 APPLE的律師表示,該公司已握有充足之證據,因此決定對PSYSTAR提出其違反DMCA法案的追加指控。但APPLE的律師沒有對此證據加以具體說明,僅表示該項新指控與PSYSTAR的產品和市場行銷活動有關。 按照原定訴訟程序,APPLE起訴PSYSTAR的訴訟預計將於2009年11月09日開庭審理,PSYSTAR和APPLE雙方必須於2009年08月20日之前向法院提交一份描述兩造觀點和權利的說明。
美國貨幣監理局發布解釋函,授權聯邦註冊銀行和聯邦儲蓄協會提供加密資產保管服務因應加密貨幣投資交易盛行,美國貨幣監理局(Office of the Comptroller of the Currency, OCC)於2020年7月22日發布一封解釋函,授權聯邦註冊銀行和聯邦儲蓄協會(federal savings associations)可為客戶的加密貨幣或數位資產提供保管服務,促使銀行持續發揮金融中介功能。此舉將有助於加密貨幣推動發展。 依據解釋函內容,聯邦註冊銀行和聯邦儲蓄協會若從事加密貨幣保管業務,主要注意要點包含必須制定健全的風險管理規範;所提供之服務須與銀行的整體業務計劃和策略一致;須以安全可靠之方式進行,包含建立適當系統以識別、衡量、監控和控制其保管服務的風險;審核帳戶是否符合洗錢防制法令;維持適當有效之內部控制制度;確保銀行所保管之資產與自有資產分開存放,並在共同控制的情況進行維護,以確保資產不會被內部或外部人員損失、毀損或挪用;維護有效之資訊安全基礎架構與控制措施,以減少駭客入侵、竊盜和詐騙;判斷是否需要專門的查核程序;提供可靠的財務報告,以及遵守相關法律規範。 貨幣監理局表示,加密貨幣保管服務,包含持有與加密貨幣相關連的密鑰,屬傳統銀行保管業務的延伸,為銀行業推動現代化營運的表現。隨著金融市場數位化,銀行與其他服務提供商將需要利用新技術和創新方式,以滿足客戶的金融服務需求。
日本內閣通過AI研發及活用推進法草案日本內閣於2025年2月28日通過並向國會提出《人工智慧相關技術研究開發及活用推進法案》(人工知能関連技術の研究開発及び活用の推進に関する法律案,以下簡稱日本AI法),旨在兼顧促進創新及風險管理,打造日本成為全球最適合AI研發與應用之國家。規範重點如下: 1. 明定政府、研究機構、業者與國民之義務:為確保AI開發與應用符合日本AI法第3條所定之基本原則,同法第4至第9條規定,中央及地方政府應依據基本原則推動AI相關政策,研發法人或其他進行AI相關研發之機構(以下簡稱研究機構)、提供AI產品或服務之業者(以下簡稱AI業者)及國民則有配合及協助施政之義務。 2. 強化政府「司令塔」功能:依據日本AI法第15條及第17至第28條規定,日本內閣下應設置「AI戰略本部」,由首相擔任本部長,負責制定及推動AI基本計畫,統籌推動AI技術開發與應用相關政策,並促進AI人才培育、積極參與國際交流與合作。 3. 政府調查及資訊蒐集機制:為有效掌握AI開發、提供及應用狀況,防止AI應用侵害民眾權益,日本AI法第16條規定政府應蒐集、分析及調查國內外AI技術研發及應用趨勢,並得基於上述結果,對研究機構或AI業者採取指導、建議或提供資料等必要措施。