美國加州於6月28日通過新版個資隱私法規

  加州立法體系在2018年6月28日通過了美國最嚴格的個人資料隱私法規,該法案無異議通過,並已經加州州長Jerry Brown簽署同意,將於2020年1月1日施行,以賦予科技產業修正其內部政策的緩衝期間。

  該法案之所以如此速戰速決,據媒體解讀是為了避免該法案內容成為加州11月選舉併公民投票之公投提案的一部分。如以公投方式通過這部法規,日後修正時將重新以公民投票進行,有造成修法困難的疑慮;而以立法者立法方式通過這部法規,賦予立法者有對其修訂改正權限,於日後能以一般修法程序進行修法。

  該法案內容與2018年5月25日實施的歐洲GDPR規範相近似,將造成加州原先隱私權規範些許改變,與倡議最初法案不同的地方在於,揭露接受個資第三人的相關資料時需揭露該第三者之類型(category)而非其身分。

  隨著本年度加州消費者隱私保護法(The California Consumer Privacy Act)的修法,大型科技公司如Google和Facebook等蒐集有大量消費者個人資料者,都將受到重大影響,依據該法,一般使用者可以向企業確認被蒐集的個資種類以及個資販賣流向,亦可以請求中止個資的蒐集及販賣,提升了一般使用者在以往對於個資使用上的地位。

  自歐洲GDPR規範實施以來至目前,美國聯邦法尚未有相應強度之規範,本次加州修法可認係GDPR實施以來美國國內第一部因應而修正之法律。

相關連結
你可能會想參加
※ 美國加州於6月28日通過新版個資隱私法規, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8106&no=64&tp=1 (最後瀏覽日:2025/11/28)
引註此篇文章
你可能還會想看
新的多媒體裝置,為數位內容帶來更多空間

  Iomega 公司是一家在全球資料儲存裝置產業中居領先地位的廠商。近日, Iomega 在慶祝其二十五週年的同時,推出了一款多媒體儲存硬碟,其本身具有多媒體 ( 包括圖片、音樂與影片等 ) 錄放的功能,可搭配目前全球所有款式的電視機種與 AV 系統使用。   這套系統,適合於家庭或長途駕駛人使用,使用者可免除煩人的多媒體檔案格式轉換問題。隨著數位科技的進步,廠商所推出的多媒體裝置愈來愈多樣,消費者的使用也愈來愈方便。相信,隨著硬體與軟體設備的不斷發展,數位內容也會展現出愈來愈多的可能與空間。

遠距健康照護之法律議題研析

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國網紅控訴前員工竊取其成功經營社群媒體之機密計算公式

美國J. Cathell公司於2022年12月21日以《保護營業秘密法》(Defend Trade Secrets Act of 2016)、《喬治亞州營業秘密法》(The Georgia Trade Secrets Act)控訴前員工Martin侵害其營業秘密「設計社群媒體發文及服裝策畫計算公式」。   J. Cathell公司是知名引領潮流、設計與旅遊的網紅兼部落客Jess Cathell所成立,其個別社群媒體皆有上千、萬名之追蹤者。其所經營之J. Cathell公司透過Instagram(@j.cathell)與網站(www.jcathell.com)提供前往特定目的地旅遊而設計的服裝,亦融合特定風格與特殊活動,同時提供販售連結。另有經營Facebook(J. Cathell Facebook)、Pinterest(J. Cathell Pinterest)、Like To Know It(下簡稱LTK)(J. Cathell LTK)等社群媒體。該服裝與風格設計是由Jess Cathell針對其客群研析出專屬、非公開之計算公式(營業秘密)所得出之結果。   被告Martin自2020年9月起任職於J. Cathell公司、擔任Jess Cathell的助理。Jess Cathell主張其提供Martin專屬計算公式之使用權限,並投注大量成本教導如何運用計算公式詮釋服裝策畫結果、設計社群媒體發文內容。前述資訊對J. Cathell公司皆具有獨立之實際或潛在經濟價值、他人亦可因被揭露之資訊,或使用該資訊而獲利。   Jess Cathell主張僅有自己、Martin能接觸專屬計算公式,並運用該公式產出設計社群媒體發文及服裝策畫結果。Jess Cathell為了保密,不曾以紙本記錄留存專屬計算公式相關資訊;用於追蹤銷售與其他績效指標的系統,皆以帳號、密碼保護。而Martin知悉該密碼,且於Martin任職期間多有提醒前述資訊之秘密性,Martin針對這些資訊具有保密義務。   Jess Cathell於2022年4月左右,發現WEAR TO WANDER公司(下簡稱WTW公司)成立Instagram、Pinterest、Facebook、LTK等帳號與WTW公司網站,於前述社群媒體發文的格式及概念,與J. Cathell公司於社群媒體發布的內容幾乎相同,並於同年8月發現Martin是WTW公司的創立者。Jess Cathell主張因Martin、WTW公司不當使用其營業秘密「設計社群媒體發文及服裝策畫計算公式」,在短短11個月內,WTW公司的Instagram即獲得近9萬名追蹤者,造成J. Cathell公司之財務與競爭損害,遂於同年12月向法院提出營業秘密侵害訴訟。   本案為首件社群媒體經營產業相關之營業秘密訴訟案件,後續判定將值得關注。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP