加州立法體系在2018年6月28日通過了美國最嚴格的個人資料隱私法規,該法案無異議通過,並已經加州州長Jerry Brown簽署同意,將於2020年1月1日施行,以賦予科技產業修正其內部政策的緩衝期間。
該法案之所以如此速戰速決,據媒體解讀是為了避免該法案內容成為加州11月選舉併公民投票之公投提案的一部分。如以公投方式通過這部法規,日後修正時將重新以公民投票進行,有造成修法困難的疑慮;而以立法者立法方式通過這部法規,賦予立法者有對其修訂改正權限,於日後能以一般修法程序進行修法。
該法案內容與2018年5月25日實施的歐洲GDPR規範相近似,將造成加州原先隱私權規範些許改變,與倡議最初法案不同的地方在於,揭露接受個資第三人的相關資料時需揭露該第三者之類型(category)而非其身分。
隨著本年度加州消費者隱私保護法(The California Consumer Privacy Act)的修法,大型科技公司如Google和Facebook等蒐集有大量消費者個人資料者,都將受到重大影響,依據該法,一般使用者可以向企業確認被蒐集的個資種類以及個資販賣流向,亦可以請求中止個資的蒐集及販賣,提升了一般使用者在以往對於個資使用上的地位。
自歐洲GDPR規範實施以來至目前,美國聯邦法尚未有相應強度之規範,本次加州修法可認係GDPR實施以來美國國內第一部因應而修正之法律。
經查,韓國《不正當競爭預防和營業秘密保護法》(下稱UCPA)之修正案於2024年1月國會通過、2月公布,預計將於8月21日生效。旨在加強對於營業秘密侵權行為的法規監管與處罰力度,故本次修訂以營業秘密相關規定之修正為主,以其他修正(如商標、標誌、地理標示誤用、侵權或其他不公平競爭行為)為輔,本文摘要如下: 一、與營業秘密相關 (一)懲罰性賠償之加重:根據第14-2條第6項規定,針對「故意」營業秘密侵權行為,將懲罰性賠償從3倍上修到5倍。 (二)增加營業秘密侵權行為之監管與罰責:新增第9-8條規定,將「任何人在未經正當授權或超越授權範圍的情況下,不得損害、破壞或改變他人的營業秘密」納入規範,如有違反,將透過新增之第18條第3項規定課予最高10年監禁或最高5億韓元的罰款。 (三)加強對於企業(組織犯罪)之管制效力:基於修法前法人與自然人之罰款數額相同、企業的追訴時效短於自然人,造成難以抑止組織犯罪行為,故新增第19條規定,使企業罰款最高可處自然人罰款3倍,並新增第19-2條規定,將對企業的公訴時效延長至10年(與自然人之訴訟時效同)。 (四)新增沒收規定:依據修法前規定,即使透過UCPA提起訴訟,且侵權人承認侵權,但因為缺乏沒收規定(需要另外依據民事訴訟法才能對犯罪所得進行沒收),導致防止二次侵權損害之效果有限,故修法後透過第18-5條之規定納入可沒收特定營業秘密所得之規定。 二、其他修正 以下兩項修正之對象涉及第2條第1項第1款、第3條、第3-2條第1款(主要為商標、標誌、地理標示等誤用、侵權或其他不公平競爭行為),並不包括營業秘密(營業秘密第2條第1項第2款以下): (一)加強行政機關的職權:根據第8條規定,關於上述違規行為,相較修法前行政機關僅能提出「建議」(無強制力),修法後特別賦予智慧財產局(KIPO)可以「下令糾正」(시정을 명할 수 있다)之權利,即若未有正當理由依命令糾正者可依照第8條、第20條第1項第1、2款規定公布違反行為及糾正之建議或命令的內容,並對其進行罰款。 (二)法院查閱行政調查記錄的權力的擴張與限制:根據第14-7條規定賦予法院職權,即在法院在特定訴訟中認為必要時,可以要求相關行政單位向法院提出其依據第7條執行的調查紀錄(包括案件當事人的審問筆錄、速記紀錄及其他證據等),若相關紀錄涉及營業秘密,當事人或其代理人可向法院申請就查閱範圍、閱覽人數等進行限制。 綜上所述,可以發現此次修法除了加強法規的監管、處罰力度,顯示近年重視營業秘密爭議外,更特別修訂針對企業、法人等組織犯罪相關規定(如賠償金額的增加,甚至處罰力度大於自然人、訴訟時效的延長等),間接強調企業、法人等組織對於營業秘密侵權有內部管理與監督之責任,若參照資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」對於企業內部管理與監督如何落實之研究,係透過將管理措施歸納成(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)十個單元的PDCA管理循環,旨在提供企業作為機制建立之參考或自我檢視機制完善性的依據,期冀促進企業落實營業秘密管理。 本文同步刊登於TIPS網(https://www.tips.org.tw)
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
國際間科學專家利益衝突管理規範趨向-以美、歐藥品審查機構科學諮詢委員會專家利益衝突解決政策與機制為例 從管理模式談智慧財產管理的重要性