加州立法體系在2018年6月28日通過了美國最嚴格的個人資料隱私法規,該法案無異議通過,並已經加州州長Jerry Brown簽署同意,將於2020年1月1日施行,以賦予科技產業修正其內部政策的緩衝期間。
該法案之所以如此速戰速決,據媒體解讀是為了避免該法案內容成為加州11月選舉併公民投票之公投提案的一部分。如以公投方式通過這部法規,日後修正時將重新以公民投票進行,有造成修法困難的疑慮;而以立法者立法方式通過這部法規,賦予立法者有對其修訂改正權限,於日後能以一般修法程序進行修法。
該法案內容與2018年5月25日實施的歐洲GDPR規範相近似,將造成加州原先隱私權規範些許改變,與倡議最初法案不同的地方在於,揭露接受個資第三人的相關資料時需揭露該第三者之類型(category)而非其身分。
隨著本年度加州消費者隱私保護法(The California Consumer Privacy Act)的修法,大型科技公司如Google和Facebook等蒐集有大量消費者個人資料者,都將受到重大影響,依據該法,一般使用者可以向企業確認被蒐集的個資種類以及個資販賣流向,亦可以請求中止個資的蒐集及販賣,提升了一般使用者在以往對於個資使用上的地位。
自歐洲GDPR規範實施以來至目前,美國聯邦法尚未有相應強度之規範,本次加州修法可認係GDPR實施以來美國國內第一部因應而修正之法律。
歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年11月發布《物聯網安全準則-安全的物聯網供應鏈》(Guidelines for Securing the IoT – Secure Supply Chain for IoT),旨在解決IoT供應鏈安全性的相關資安挑戰,幫助IoT設備供應鏈中的所有利害關係人,在構建或評估IoT技術時作出更好的安全決策。 本文件分析IoT供應鏈各個不同階段的重要資安議題,包括概念構想階段、開發階段、生產製造階段、使用階段及退場階段等。概念構想階段對於建立基本安全基礎非常重要,應兼顧實體安全和網路安全。開發階段包含軟體和硬體,生產階段涉及複雜的上下游供應鏈,此二階段因參與者眾多,觸及的資安議題也相當複雜。例如駭客藉由植入惡意程式,進行違背系統預設用途的其他行為;或是因為舊版本的系統無法隨技術的推展進行更新,而產生系統漏洞。於使用階段,開發人員應與使用者緊密合作,持續監督IoT設備使用安全。退場階段則需要安全地處理IoT設備所蒐集的資料,以及考慮電子設備回收可能造成大量汙染的問題。 總體而言,解決IoT資安問題,需要各個利害關係人彼此建立信賴關係,並進一步培養網路安全相關專業知識。在產品設計上則須遵守現有共通的安全性原則,並對產品設計保持透明性,以符合資安要求。
歐盟提出人工智慧法律調和規則草案歐盟執委會(European Commission)於2021年4月21日提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(簡稱AI規則草案),旨在平衡「AI運用所帶來的優勢」與「AI對個人或社會所帶來的潛在負面衝擊」,促使會員國在發展及運用AI時,能採取協調一致的態度及方法,共同維護歐洲公民基本權利與歐盟價值。 歐盟自2019年起即倡議發展「值得信賴的AI」(Trustworthy AI)。AI規則草案之提出,除了落實執委會2019年至2024年之政策願景外,亦呼應2020年歐洲議會(European Parliament)之建議—針對AI應用之機會與利益採取立法行動,並確保合乎倫理原則。惟鑒於歐盟在環境、健康、公共事務、金融、交通、農業等領域對AI應用之高度需求,以及企業仰賴AI技術提升競爭優勢等因素,執委會係以「風險為基礎」之概念取向(risk-based approach)制定AI規則草案,避免對新技術發展造成不必要的限制或阻礙。 本規則草案將AI系統,依其「對歐盟基本權利或價值所創造的風險程度」,分為下列三種類型,並施以不同程度的監理方式: 一、不可接受之風險:原則上禁止使用此類型AI系統或使其進入歐盟市場。例如:利用潛意識技術操控個人、在公共場合利用「即時遠端生物辨識系統」進行執法、公務機關普遍對個人進行社會評分等。 二、高風險:於附錄中列出所謂高風險AI系統,要求高風險AI系統之提供者遵循風險管理、資料治理、文件紀錄保存、透明性與資訊揭露、人為監督、健全性、準確性與資安等要求;且AI系統進入歐盟市場前,需進行符合性評估(conformity assessment),進入市場後,則需持續監控。 三、非不可接受之風險亦非高風險:鼓勵AI系統提供者或使用者,自願建立行為準則(codes of conduct)。 AI規則草案亦鼓勵會員國建立AI監理沙盒(regulatory sandbox)機制,且以中小企業、新創公司為優先對象,使創新AI系統進入市場之前,能於可控環境中依明確計畫進行開發、測試與驗證。
3D列印所涉法律議題3D列印(3D printing),屬於快速成形技術的一種,以數位模型檔案為基礎,運用粉末狀金屬或塑膠材料等可粘合材料,透過逐層堆疊累積的方式來構造物體的技術(即「積層造形法」)。過去其常在模具製造、工業設計等領域被用於製造模型。現在則可用於產品的直接製造,特別是一些高價值應用(比如髖關節或牙齒,或一些飛機零組件)已經有使用這種技術列印而成的零組件,技術漸漸成熟普及。 3D列印通常是採用數位技術材料印表機來製作。3D印表機的產量以及銷量2013年以來已經得到了極大的增長,其價格也正逐年下降,未來家家戶戶擁有3D列印機器可能就如同擁有洗衣機般平凡,帶出新的商機。該技術在珠寶、鞋類、工業設計、建築、工程和施工(AEC)、汽車、航空太空、牙科、醫療產業、教育、地理訊息系統、土木工程、槍枝以及其他領域都有所應用。 然而3D列印機器的普及只要透過網路平台下載相同的數據檔案,就能夠不花費一毛錢即可得到相同的內容,因此引發了智慧財產權的爭論。 3D列印所涉及的法律議題相當廣泛,有:著作權、專利權、商標權。再者,而在工商業等公司法領域,亦有可能可透過公平法加以保護。另外,專利法、新型專利法 (Gebrauchsmuster)、外觀設計法(Designrcht)對於實際上不能保密的技術解決方案和設計,例如,在產品具體化過程、在跨企業生產時、或物流遞送和服務提供過程中,在法律保護上,則重大意義。 又,在工業4.0因使用跨越國界之互聯網程序和系統,亟需國際法之保護,唯智慧財產權部分仍應該遵守屬地原則,以在該國有法律規定者為限。 在歐洲法律的層級,歐陸未來歐盟專利(EU-Patent)或稱歐洲專利一體化效果(Europäisches Patent mit einheitlicher Wirkung, EPeW) 將得到簡化,將具備共通的專利保護法律框架。
2025年美國法院以「後設資料」作為審理AI深偽數位證據案件之重點2025年9月Mendones v. Cushman and Wakefield, Inc.案(下稱Mendones案),面對生成式AI與深偽(deepfakes)對數位證據真實性的威脅,美國法院特別提到針對後設資料(metadata)的審查。 基於Mendones案原告提交9項涉嫌使用生成式AI的數位證據,其中證詞影片6A與6C影片具備「人物缺乏臉部表情、嘴型與聲音不相符,整體表現像機器人一樣」且「影片內容循環撥放」等AI深偽影片之典型特徵,法院懷疑原告舉證的數位證據為AI深偽影片。 因此,法院要求原告須提出該影片的後設資料,包含文件格式、創建/修改日期、文件類型、拍攝影片的快門速度等客觀資訊。 法院表示,原告提交的後設資料不可信,因為包含許多通常不會出現在後設資料的資訊(非典型的資訊),例如:著作權聲明。且法院進一步指出,許多非典型的資訊被放在不相關的欄位,例如:Google地圖的URL網址、電話號碼、GPS座標及地址等被放在「音樂類型」(musical genre)欄位內。因此法院懷疑,前述「非典型之後設資料」是被有存取文件與編輯權限的人添加的「後設資料」。 原告則主張,其透過iOS 12.5.5版本作業系統的Apple iPhone 6 Plus手機拍攝影片6A。法院指出,直到iOS 18版本作業系統,iPhone才推出可用於生成深偽影片的新功能「Apple Intelligence」相關技術,且該版本需要使用iPhone 15 Pro或更新的手機機型,因此法院發現技術上的矛盾。 法院認為,本案生成式AI影片已超越提交虛假引文(Fictitious Citations,即過往案例曾出現過律師提出AI虛構的判例之情況)的範疇。在訴訟中使用深偽證據,嚴重影響了法院的審理與公眾對司法的信任,並增加法院評估該證據是否為深偽之成本。因此,法院採取嚴厲的永久駁回訴訟(dismissed with prejudice),以表示對企圖以深偽資料為證據的行為持「零容忍」態度。 Mendones案展現法院審理AI深偽數位證據的細節,如「審視後設資料之內容準確、完整」為法院確認數位證據真實性的重要手段。 面對AI時代下數位證據的挑戰,我國司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局共同推動之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」結合區塊鏈技術。「b-JADE證明標章」確保鏈下管理數位資料原檔的機制,以及鏈上的「存證資料」包含「與數位原檔資料最終版本連結的『必要後設資料』」、雜湊值及時戳,如能妥適運用司法聯盟鏈進行證據「驗真」程序,將有助於強化數位信任。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)