紐約市政府於2018年8月通過「短期租賃規則」(Regulation of Short-term Residential Rentals)。該規則將於通過後180天生效適用,強制要求平台業者必須定期提供下列數據報告給紐約市政府:
若相關平台業者未提交報告,則須面臨1,500美元以下之罰鍰。目前紐約市是Airbnb在美國最大的市場,該項規則的通過及生效勢必會對Airbnb造成相當大的影響及成本負擔。因此Airbnb在該規則通過後不久,旋即向法院提起訴訟,聲稱該規範違反了平台用戶之隱私權及美國憲法第一及第四修正案所保障之權利。
紐約市政府方面則作出回應,這項規則可協助政府取得保護住房安全所需的關鍵資訊,並保證遊客及租賃者之安全,同時並打擊非法的短期出租。而該規則也顯示紐約政府對於短期日租套房之服務將趨向保守的態度。
紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。 於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。 如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
美國法院新判決,讓Rambus公司無法取得Micron公司的權利金美國德拉瓦(Delaware)州法庭於1月9日判決,記憶體晶片(DRAM)設計業者Rambus公司(Rambus Inc.)因在訴訟過程中,毀壞此一專利訴訟案件的相關文件與資料,使其專利不具執行力。因此無權以系爭的12項專利要求 Micron公司(Micron Technology Inc.)支付權利金。判決公告後,Rambus公司的股價因而重挫約40%。 兩家公司的紛爭可溯至2000年,該年度Micron公司曾控告Rambus公司,宣稱Rambus公司試圖掌控當時DRAM晶片的市場。當時,Rambus公司要求Micron公司在內的晶片製造業者須支付權利金給該公司,而晶片製造業者則予以反擊,宣稱Rambus公司取得專利的過程有瑕疵。 雙方除於法院進行訴訟外,並利用美國聯邦貿易委員會(FTC)進行紛爭處理,互有勝負。例如:去年11月,加州地方法院宣判Rambus公司控告Micron公司、海力士(Hynix)、三星電子(Samsung Electronics)與南亞科技(Nanya Technology)等公司侵權一案,獲得初步勝利。然而如今法院的判決卻又重擊Rambus公司,因為該判決可能使該公司往後難以利用其所擁有的專利,迫使其他晶片製造業者支付權利金,也因此造成Rambus公司股價重挫的情形。
部落格及其法律問題之初探