美國加州州長Jerry Brown於2018年09月30日簽署該州的網路中立(Net Neutrality)Senate Bill 822法案,但美國司法部(Department of Justice,DoJ)隨即於同日對加州提起訴訟。DoJ指出Senate Bill 822法案牴觸聯邦政府於2018年對於網際網路採取解除管制之政策,該法案意圖阻撓聯邦政策的施行,有違美國憲法。
美國國會於1996年針對電信法(The Communications Act)制定「聯邦或州對網路低度管制(unfettered by Federal or State regulation)」之政策,美國聯邦通訊委員會(Federal Communications Commission,FCC)為符合該政策,於2002年發布命令,將寬頻網路接取服務列為資訊服務(information service),而美國不將資訊服務提供者以公共事業來看待並進行管理。雖然FCC於2015年就網路中立性訂立規則,要求網路服務提供者(Internet Service Provider)應平等處理所有資料,不得擅自降低流量速度、封鎖網站或服務,以確保任何人獲取資訊時不受不合理的限制。但FCC於2017年12月取消網路中立規定,並確保網際網路會在FCC之低度管制措施下,持續維持其自由與開放性。
DoJ及FCC均認為,網際網路本質上為跨州資訊服務,依據美國憲法第6條第2項規定,憲法、聯邦法律及美國對外條約為全國之最高法律,跨州之商務(interstate commerce)應屬聯邦管轄事項而非州管轄事項。因此,在聯邦政府已廢除網路中立性的情形下,且州政府沒有制定州際貿易規範的權限,則加州政府通過Senate Bill 822法案對網路立法監管,針對網路使用頒布違法且極端的法令,是企圖藉由Senate Bill 822法案破壞聯邦政府的規定,不當限制網路自由,與聯邦政府政策有所牴觸,此為違法及不利於消費者。故DoJ聲明其有責任捍衛聯邦政府的特權(prerogatives)以及維護憲法秩序。為此,DoJ起訴聲明為禁止加州執行Senate Bill 822法案,並請求法院判決Senate Bill 822法案無效。
雖然美國聯邦政府廢除網路中立性,但此政策受民主黨、Facebook、Amazon等著名大型科技公司及消費者的抨擊。因此,就DoJ起訴加州Senate Bill 822法案違法,法院是否認同DoJ所主張的牴觸美國憲法,以及美國對於網路中立性議題的後續發展,值得觀察。
2018年12月1日,加拿大智慧財產局公告了新專利法,並立2018年12月1日起至31日為公衆諮詢期,該法於2019年正式生效。 本次專利法修改多屬鬆綁權利人之期日限制,包括: 恢復優先權主張:在新專利法上路後,在非故意錯過了12個月的優先權期限的情況下,可允許將優先權期限延長至14個月; 更容易取得申請日:針對直接申請加拿大專利而非透過專利合作條約(Patent Cooperation Treaty,PCT)的申請案,即使尚未繳納申請費,或是相關申請文件非英文和法文,一樣可以取得申請日; 允許補交在主張優先權申請遺漏的內容; 獲核准通知後提出修改作業的程序順暢化; 採用電子送件,排序列表不會被徵收超頁費; 對特定的錯誤有更明確的修正截止日:移除因「行政作業」上疏失而提出修正請求的規定,在其他規定上增加了明確的截止日; 採PCT途徑進入國家階段已經不再有42個月的期限; 維持費用制度較為複雜,錯過實質審查期限影響也較嚴重; 如果已遞交之申請案並非英文或法文版本,那未來修改申請案必須要能自合理的從原本外語版本中合理推論而出; 需提出優先權證明文件:申請人必須向加拿大專利局遞交每一件先前申請的優先權證明文件,特殊情況下才能豁免提交; 部分申請期限變短:新專利制度縮短申請人部分申請程序及時間,例如申請實體審查期限從申請日起5年內降為4年等。
日本政府擬建構自動駕駛實驗資料收集和共享體制日本內閣下設之日本經濟再生本部(日本経済再生本部),為實現2017年6月於「未來投資戰略2017」所提出之建立實驗資料共享體制政策,於2017年8月31日起舉辦自動駕駛官民協議會(自動走行に係る官民協議会),邀請政府相關部門及民間專家等關係人士,檢討自動駕駛實驗結果、實驗資料之共享,以及根據民間需求進行實驗計畫之工程管理等制度的整備方向,預計於年內針對複雜的駕駛環境制定共通指標,以釐清哪些資料是應收集之實驗資料,建構自動駕駛實驗資訊共享、收集體制。自動駕駛官民協議會預計在未來幾次會議中,針對應收集之實驗資料、標準格式、體制、實驗計畫的進程管理、官民合作事項等進行討論,並將在未來投資會議中報告檢討結果,其結果將與明年度之成長戰略一同反映於「官民ITS‧構想藍圖」(官民ITS構想・ロードマップ)中。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。
英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定Uber違反《Data Protection Act 1998》資料保護法英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定知名共享公司Uber未能在網路攻擊期間保護客戶的個人資料,故處以罰款385,000英鎊。 ICO調查發現Uber的諸多過失,包含系統存有一系列原可避免的數據安全漏洞,使得攻擊者可透過Uber美國母公司旗下所營運的雲端儲存系統,下載大約270萬筆英國客戶個人資料,例如全名、電子郵件及電話號碼等。該事件亦影響了Uber在英國8萬多名司機的相關營運紀錄,如旅程詳情及支付金額。然而,受影響的客戶和司機竟達一年多未被告知此個資外洩事故。相反的,Uber反而向攻擊者妥協並支付了10萬美元,以銷毀被盜取的數據。 ICO認為,這不僅為Uber資料安全之問題,且當時未採取任何措施通知可能受影響的人,或對其提供任何協助,已完全忽視受害客戶和司機之權益。而對攻擊者支付贖金後即保持沉默,亦非對於網路攻擊之適當反應,Uber未完善的數據保護措施,以及隨後的決策與行為,反將可能會加劇受害者權益的受損。 因此,ICO認為該事件已嚴重違反了英國1988年資料保護法(Data Protection Act 1998, DPA)第7條的原則,有可能使受影響的客戶和司機面臨更高的詐欺風險,故從嚴判處Uber高達385,000英鎊罰款。