英國因劍橋分析個資外洩事件開罰臉書

  英國資訊專員辦公室(Information Commissioner’s Office, ICO)於2018年10月24日公告針對臉書公司(Facebook Ireland Ltd. & Facebook Inc.)之劍橋分析(Cambridge Analytica)個資外洩事件,依據英國資料保護法(Data Protection Act 1998)第55A條之規範,裁罰臉書公司50萬英鎊之罰鍰。

  自2018年3月劍橋分析違法取得與使用臉書個資事件爆發以來,估計約有8700萬筆臉書上的個人資料遭到違法使用,引起全球對於網路個資保護的重視。在遭到違法取得與使用的個資當中,也包含了歐盟以及英國臉書使用者的個資,因此英國ICO有權對此事件展開調查並對臉書公司進行裁罰。

  根據英國ICO的調查,自2007年至2014年間,臉書公司對於其平台上的個資處理(processed)有所不當,違反資料保護法之資料保護原則(Data Protection Principle,DPP),包含未適當處理個人資料(DPP1),以及未採取足夠的技術與作為防止未經授權或違法使用個資(DPP7),致使劍橋分析得以透過臉書公司提供之API違法取用臉書使用者個資。

  由於劍橋分析事件發生時,歐盟GDPR(General Data Protection Regulation)尚未正式上路,因此英國ICO依據事件發生時之法律,亦即基於歐盟資料保護指令(Directive 95/46/EC)所訂定之英國資料保護法,裁處臉書公司50萬英鎊的罰款;若依據基於GDPR之新版英國資料保護法(Data Protection Act 2018),臉書公司將可被裁處最高1700萬英鎊或年度全球營業額4%之罰款。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 英國因劍橋分析個資外洩事件開罰臉書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8145&no=57&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

歐盟執委會宣布「軟體開源授權及複用」決定

  歐盟執委會於2021年12月8日宣布「軟體開源授權及複用」決定(COMMISSION DECISION on the open source licensing and reuse of Commission software)。本決定規範執委會軟體之開源授權條件與複用方式,其軟體開源授權流程如下: 一、執委會依本決定(下同)第5條授予其軟體的開源授權證應為歐盟公共授權(the European Union Public Licence, EUPL),除因(1)適用第三方軟體的互惠條款,而強制使用其他開源授權證,或替代開源授權證比EUPL更便於人民使用該軟體;(2)適用第三方軟體之授權條款,存在多個開源授權標準(不含EUPL),則應優先選擇授予最廣泛權利的開源授權。 二、透過第8條對智慧財產權進行核實,包括:(1)軟體識別(2)對軟體的智慧財產權進行驗證;及(3)安全驗證。 三、依第6條規定將所有開源軟體置於資料庫,供公民、公司或其他公共服務有潛在利益者取得。   另外,依第四條規定,本規則不適用於以下情形:(1)因第三方智慧財產權問題,無法允許複用的軟體;(2)該原始碼之發布或共享,對執委會、其他歐洲機構或團體的資訊系統或資料庫安全構成實質或潛在風險;(3)因法律規定、契約義務或性質,其內容須被視為機密之軟體;(4)依(EC)1049/2001第4條所列之情形,包含但不限於:因公共利益、國家安全、隱私保護、商業利益、訴訟或審計之利益等,該軟體須被排除,或只能由特定之一方取得或管理;(5)委託由執委會進行研究產生之軟體,若公開將干擾臨時研究結果之驗證或構成拒絕註冊有利於執委會之智慧財產權的理由。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

L'oreal v. eBay:歐盟法院判決網路平台交易業者應負商標侵權責任

  有關在網路販售仿冒品所透過之網路交易平台業者是否應負法律責任之問題,歐盟法院(Court of Justice of the European Union)於2011年7月12日針對L’oreal v. eBay案作出判決,認為如eBay之網路交易平台業者應為平台使用者之商標侵權行為負責。   國際知名化妝品品牌L’oreal 於2007年對eBay提出多項商標侵權之控訴,L’oreal認為eBay沒有適當的管控阻止其交易平台使用者之商標侵權行為,其包括在交易平台上販售仿冒品及非賣品,進行平行輸入販售非給歐盟市場流通之商品給位在歐盟會員國之人,以及購買網路關鍵字廣告協助交易平台使用者找到仿冒L’oreal品牌之商品,但eBay認為其適用歐盟電子商務指令(EU E-Commerce Directive)下之有關網路服務業者之免責條款。   歐盟法院之判決認為,網路交易平台業者若有扮演主動的角色,對仿冒商品之販售資料有掌控或知曉,則歐盟電子商務指令之免責條款應不適用,另外,若網路平台交易業者雖然沒有扮演主動的角色,但知道在其交易平台有商標侵權之販售行為但並沒有採取任何阻止行動,則網路平台業者也無法享有上述之免責權。同時,歐盟法院也認為各國法院應可以要求網路交易平台業者採取動作停止及防止交易平台使用者之侵權行為。

TOP