人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例
資訊工業策進會科技法律研究所
蔡宜臻法律研究員
2018年11月27日
壹、事件摘要
美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。
本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。
貳、重點說明
2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。
根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體:
(1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。
(2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。
(3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。
(4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。
雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。
CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]:
後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。
由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。
另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。
參、事件評析
《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。
然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮:
一、「理解」演算法?
根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17]
二、如何要求演算法透明度?
指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。
三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?
FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。
肆、結語
隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。
然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。
[1] 21 U.S. Code §360j
[2] FD&C Act Sec. 520(o)(1)(A)
[3] FD&C Act Sec. 520(o)(1)(B)
[4] FD&C Act Sec. 520(o)(1)(C)
[5] FD&C Act Sec. 520(o)(1)(D)
[6] FD&C Act Sec. 520(o)(1)(E)
[7] FD&C Act Sec. 520(o)(1)(E)(i)
[8] FD&C Act Sec. 520(o)(1)(E)(ii)
[9] FD&C Act Sec. 520(o)(1)(E)(iii)
[10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii)
[11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018)
[12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8
[13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11
[14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11
[15] 21th Century Cures Act, Sec. 3060(b)
[16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018)
[17] Id.
[18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018)
[19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料處理篇,主要為促使企業理解有利活用於數位技術與服務的資料管理方法。 《指南》資料處理篇指出,資料的生命週期涵蓋資料設計、資料蒐集、外部資料連動、資料整合、資料處理、資料提供、資料累積以及資料銷毀等不同階段。《指南》建議在資料生命週期的各階段,盡可能的不要有人類的介入。舉例而言,資料蒐集可以透過感測器或系統進行。該建議的目的在於,人類介入資料生命週期,僅會引起輸入錯誤或是操作錯誤等風險。 此外,《指南》亦於資料處理篇中針對資料治理給出四點建議,分別如下: (一)資料是企業的重要資產,因此應重視其管理方式。管理方式涵蓋帳號密碼、透過生物辨識技術進行資料接觸管理、Log檔之取得、系統設定禁止使用USB等方式。 (二)資料治理的重點在於對人政策。除了向員工強調不要開啟不明網站及釣魚信件以外,企業亦應與員工建立堅實的信賴關係。 (三)資料公開或流通時應注意,如果不希望提供後的資料被二次利用,應於雙方間的資料利用契約中敘明。此外,由於資料具備易於複製及傳輸的特性,因此在公開或流通資料時,應考量適用諸如時戳技術等可確保資料原本性或使資料無法被竄改的數位技術。 (四)資料銷毀如果僅是單純的刪除資料,有透過數位技術找回資料的可能性。因此,除可評估委由專門進行資料銷毀服務的公司協助以外,由於銷毀資料經由個人電腦外洩之事件時有所聞,故亦應留意個人電腦之資料管理。 我國企業如欲將資料活用於數位技術或服務,除可參考日本所發布之《指南》資料處理篇以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,以建立自身資料處理流程,進而強化資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本擬讓司法機關偵查時利用GPS定位取得位置資訊無須事先告知,僅須取得法院令狀日本電信事業個人資料保護指針(電気通信事業における個人情報保護に関するガイドライン)自2011年修訂後至今即未有任何改變。然而,隨著現代行動通信軟硬設備技術的進步,智慧型手機中已有許多應用程式可透過GPS衛星定位功能準確獲取使用者之位置資訊,倘若司法機關也能於搜查辦案過程即時取得此定位資訊,將可提高偵查效率並縮短破案時程。 為此,日本總務省擬將原先須事先通知行動設備使用人與獲得法院令狀後,方得利用GPS衛星定位獲取位置資訊之電信事業個人資料保護指針第26條修訂為司法機關取得法院令狀後,即可利用GPS衛星定位獲取行動設備使用人位置訊息。 然此項修訂除將可能造成行動通訊業者營運上的額外負擔之外,亦有侵害設備使用者之個人隱私與個人資料疑慮。因此,為了抑止濫為偵查,法院令狀之發出須有其必要性,搜查機關亦必須向行動通訊業者為必要性之說明。 再者,此項利用GPS衛星定位獲取位置訊息之方式也僅限於使用Android系統設備且將定位功能開啟之使用者,對於使用Apple iOS系統設備之使用者則不但須使用者開啟定位功能,還須經過美商蘋果公司同意方能取得亦是一項難題。 日本總務省已於2015年4月17日發布此項法令修訂訊息並徵詢公眾意見,預計於6月完成修法並公布之。
醫療與健康資料創新應用法制研析醫療與健康資料創新應用法制研析 資訊工業策進會科技法律研究所 2022年06月25日 壹、事件摘要 配合未來智慧醫療與精準健康之發展,民眾的健康、醫療資料將成為相關創新技術之基礎,且需整合許多異質資料庫(包括:生物資料、病歷、環境資料、基因資料等)作為相關研究與診斷基礎。然而,在創新實驗階段,個人資料保護向來是最核心之議題,如何在「創新技術」與「資料保護」間需取得衡平,於保護民眾個資權利的同時,又能滿足規範緩解或彈性化之明顯需求,便成為亟待解決的問題。 近年來,我國積極透過「法規沙盒」(Regulatory Sandbox)制度,來創造一個兼顧技術創新與有效監理的機制,例如《金融科技發展與創新實驗條例》與《無人載具科技創新實驗條例》皆是設立法規沙盒制度,在確保法律監管的前提下,依個案情形適度地鬆綁法規,為業者打造出恰當的實驗空間,以鼓勵創新發展。然而,我國於金融與交通領域訂立沙盒制度之時,關於個資法是否能被豁免,一度成為討論重點,最後二條例皆明文規定實驗進行以遵守個資法為原則,因此法規沙盒制度宜否用以緩解醫療與健康資料相關法律限制,仍堪研探;此外,醫療法規沙盒所涉及的醫療或健康資料主要落入敏感性資料之範疇,在個資法監管密度更高的情形下,更加限制了智慧醫療與精準健康產品或服務之發展,則如何突破此等醫療領域創新困境,即屬我國未來應密切關注之焦點。 職是之故,本文將研探國際上涉及醫療健康資料之機制,以作為我國法規沙盒等制度措施抑或設計其他方式運作之借鏡,讓創新者能獲有個資法等法規之規範彈性空間以進行創新活動。 貳、重點說明 以下對於英國、日本及新加坡等國制度,觀測分析其如何緩解資料法規而創造出彈性化空間,使創新者有機會藉此活用醫療健康資料,進行醫療領域之創新發展。 一、英國 (一)ICO法規沙盒 英國資訊專員辦公室(Information Commissioner's Office, ICO)於2019年推出法規沙盒計畫,希望可向利用個人資料開發具有明顯公共利益的創新產品和服務的組織,提供必要的試驗空間。在進入沙盒之前,ICO將會要求申請者簽署相關條款,並有專屬ICO沙盒成員與之聯繫,安排會議協助制訂沙盒計畫,同時也會要求申請者進行資料保護自我評估清單,以利沙盒計畫之制定[1]。 此沙盒的特色之一,在於不會完全排除資料保護規範之適用,而是著重於如何協助業者遵法,參與者能透過此計畫借助ICO在資料保護方面的專業知識和建議,從而在測試創新服務時減輕風險,並確保適當的個資保護措施臻於完備[2]。此外,參與者也將會收到一份暫緩執法聲明(statement of comfort from enforcement),亦即在參與沙盒期間,若產品或服務因疏忽而有違反資料保護相關法規之情形,只要違規行為未超出原先進入沙盒所預想的情況,便不會立即導致ICO的監管行動,暫緩程度則取決於創新團隊與ICO保持協作與對話之狀況[3]。 截至2021年2月,其尚有9個測試案例正在進行中,而與健康、醫療資料有關者為CDD服務有限公司(CDD Services)及諾華製藥的語音解決方案(Novartis Voice Enabled Solutions project)[4]。 (二)動態同意機制 「動態同意」(Dynamic Consent)是指一種基於網路與資通訊技術的即時同意程序,透過利用資通訊技術建立的動態同意網路平台,研究者得即時通知資料當事人其研究進度、研究目的變更等事項,資料當事人則得隨時修改同意範圍或撤銷同意[5]。 動態同意機制的優點,對研究者而言,在於節省許多徵詢同意所需之成本,也能清楚瞭解資料庫中的資料附加了哪種類型的同意或是資料當事人要求徵詢同意的密度[6],並且可以更加容易地整合其他多媒體技術(例如播放影片、照片與錄音)進行研究內容與風險之說明。而對於資料當事人而言,動態同意則可解決同意成本過高而不得不實施過於寬泛的概括同意之情形,從而更加保障資料主體之資料自主權[7]。 在英國,動態同意之原型係於2008年左右ENCoRe計畫提出;國際間較為有名的計畫皆實施於英國,例如曼徹斯特大學inBank團隊開發的蒐集與處理電子健康紀錄系統、牛津大學主導的參與式Rudy研究等[8]。 二、日本 日本於2018年實施「專案型沙盒」制度,建立特定不受現有法規限制之情境,使業者得於限定期間及場域內,以「新興技術」進行實證[9]。所謂「新興技術」,係指在創新事業活動中所使用具有顯著新穎性之技術或方法,且該技術或手法可創造出高附加價值者[10],而「具顯著新穎性」者,則指相較於該領域的常用技術和方法,更有新穎性且得以衍生實用化和事業化討論的技術與方法,例如AI、IoT、巨量資料、區塊鏈等[11]。 專案型沙盒中,有3件與醫療相關的案例,其中涉及個資法規範的是「以生物辨識技術了解本人意思(Digital Living Will)」一案。本案情境為考量到獨居老人數量增加,其因急救被送往醫療機關時,尚需時間確認其身分,甚至須向家屬說明治療方式且獲同意後,始得開始檢查和治療,而常有遲延急救時間之情事,故醫院及醫療業者共同申請一項專案型沙盒實證計畫,藉由「預立同意」之方式保存個人手術及檢查等意願,待患者發生急救情形時,將依指紋、手指靜脈、人臉等生物辨識技術準確且迅速地確認身分,向醫院提供患者的個人意願資料。本計畫採取的新技術,涉及日本個資法第18條、第19條及第23條規定,申請者表示將依法辦理之,例如告知參加者「獲取生物辨識資料之利用目的」、經參加者同意後始向第三方提供生物辨識資料等,並由厚生勞動省和個人情報保護委員會等主管機關進行監督[12]。 三、新加坡 新加坡於2012年10月通過《個人資料保護法》(Personal Data Protection Act 2012, PDPA)[13],同時依法設置個資保護委員會(Personal Data Protection Commission, PDPC)。該法旨在規範「非公務機關」之個人或組織對於個人資料的蒐集、利用及揭露(例如與第三方共享)等相關行為。該法第62條設計了豁免權(Exemption),個人或組織可於備妥申請文件後,向個資保護委員會預先申請尋求《個人資料保護法》任何條文之豁免;經審查批准後,個資保護委員會可以透過命令(order),在特定的規則或情況下,豁免任何個人或組織遵守本法的全部或部分規定[14]。 再者,新加坡提出「資料協作計畫」,以促進組織、政府、個人三方間資料無障礙流通,創造更多合作機會進行創新應用。該計畫可分作兩部分,首先建立「可信賴資料共享框架」(Trusted Data Sharing Framework),為企業對企業的資料交換方法步驟提供指南;其次提出「資料共享安排」(Data Sharing Arrangements)的資料法規沙盒計畫[15],排除企業以創新模式近用個人資料時發生的阻礙,「資料共享安排」係依據上述個人資料保護法第62條所賦予的豁免權,讓個人或組織可在個人資料保護委員會訂定的規則下,依照個案給予組織免除個資法部分規範(例如:不須取得當事人同意、免除跨境傳輸之限制)。故總體而言,「資料協作計畫」下的「可信賴資料共享框架」與「資料共享安排」,將由政府擔任監管角色,申請者只要符合指南建議方向,例如遵循法律、達到一定資料技術應用品質、實施資安與個資保護措施等,便可進行個人與商業資料之共享。 以「中風患者於資料共享安排(資料法規沙盒計畫)之運作」為例,醫院、志願福利組織(Voluntary Welfare Organization, VWO)[16]與行政機關之資料共享計畫,彼此之間分享病患個人資料,毋須再經患者之同意,由資料中介機構進行資料分析,以改善服務並確保有效媒合老年中風患者之援助。經分析後,志願福利組織可主動與醫院患者接觸以利其提供收入援助或社會支持,行政機關則可利用相關資訊改善政策[17]。 參、事件評析 隨著新興科技崛起,資料驅動之技術創新需求於近年大幅顯現,若個資法規範始終缺乏彈性,又無相關機制確保創新空間,我國社會經濟發展將嚴重受影響。對此,面對「創新技術」與「資料保護」間如何取得衡平的難題,各國政府透過不同規範及政策手段,給予個資法規範一定彈性,以促進國內創新與轉型的腳步,可見個資法既定規範並非絕對,重點仍在於如何做好個資保護評估及風險管控,使資料主體於創新實驗下仍可受到隱私保護。 綜觀上開國家的資料法規彈性化措施,主要以兩大方式進行,其一為「針對法規提出整體鬆綁或彈性化機制」(法規面),例如英國ICO法規沙盒、日本專案型沙盒、新加坡資料共享安排機制皆屬之,雖各國立法模式或依據有所不同,但主要仍是利用法規沙盒或性質相近之措施,於運作上賦予個資法規一定彈性。其二則為「利用技術解消資料利用障礙」(技術面),例如動態同意機制,透過科技來擴大個資法規的適法及遵法態樣。 據此,我國在研議「醫療領域宜否應用法規沙盒等制度,緩解個資法等相關法規現行規範」時,或可先肯認個資法確有(有條件地)豁免適用之餘地,且得以法規沙盒作為個資法限制之彈性機制。其次,在立法模式的選擇上,由於我國已著手立法《智慧醫療創新實驗條例》(草案)[18]或考量規劃泛用型法規沙盒,未來或可於「醫療法規沙盒」或「泛用型法規沙盒」立法過程中,研議是否豁免創新實驗有關個資法令之適用。再者,針對個資法豁免條件,有鑑於沙盒實驗期間不能忽視個人利益之隱私保障措施,故應有一套完善機制協助法規沙盒之監管,相關豁免事項及條件設計,也須考量創新、公共利益與資料當事人權利侵害之比例原則。最後,在實作方面,機關亦可協助與輔導業者引進動態同意等措施及其新技術,以利業者遵法。 [1] ICO, What will happen if our application to the Sandbox is successful?, https://ico.org.uk/for-organisations/the-guide-to-the-sandbox/what-will-happen-if-our-application-to-the-sandbox-is-successful/ (last visited Feb. 6, 2021). [2] ICO selects first participants for data protection Sandbox, https://www.computerweekly.com/news/252467504/ICO-selects-first-innovation-Sandbox-participants (last visited Feb. 6, 2021) [3] ICO, What will happen if our application to the Sandbox is successful?, https://ico.org.uk/for-organisations/the-guide-to-the-sandbox/what-will-happen-if-our-application-to-the-sandbox-is-successful/ (last visited Feb. 6, 2021). [4] ICO, Current Projects, https://ico.org.uk/for-organisations/regulatory-sandbox/current-projects (last visited Feb. 6, 2021). [5] Jane Kaye, Edgar A Whitley, David Lund, Michael Morrison, Harriet Teare & Karen Melham, Dynamic consent: a patient interface for twenty-first century research networks, European Journal of Human Genetics, 23, 141–146 (2015) [6] 動態同意平台上的研究者介面,可能顯示資料當事人對於哪種類型的研究給予何種同意(例如對於心臟病研究給予概括同意;對於癌症研究給予特定同意),允許概括同意的時候也可以註記同意期限,或設定其他限制。 [7] Rasmus Bjerregaard Mikkelsen, Mickey Gjerris, Gunhild Waldemar & Peter Sandøe, Broad consent for biobanks is best - provided it is also deep, BMC Med Ethics, 20(1),71 (2019) [8] 義大利、美國、日本與澳洲等國目前皆有實施動態同意之機制,但都是以特定疾病或研究主題為主,尚未有全國通用的動態同意系統。義大利有名為「CHRIS」的慢性病研究動態同意平台;美國有非營利組織架設名為「PEER」的基因研究動態同意平台;日本有名為「Rudy Japan」的動態同意平台;澳洲有名為「CTRL」的動態同意平台。 [9] 生産性向上特別措置法第2條第2項。 [10] 同前註。 [11] 新技術等実証の総合的かつ効果的な推進を図るための基本的な方針,頁1(2018),https://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/underlyinglaw/basicpolicy.pdf(最後瀏覽日:2021/2/10)。 [12] 〈生体認証を用いた本人意思に基づく救急医療の実証〉,首相官邸,https://www.kantei.go.jp/jp/singi/keizaisaisei/project/gaiyou7.pdf (最後瀏覽日:2021/2/19)。 [13] Personal Data Protection Act 2012, No. 26 of 2012. [14] Personal Data Protection Act 2012, Section 62. [15] Data Collaboratives Programme, https://www.imda.gov.sg/programme-listing/data-collaborative-programme (last revised Jun. 8, 2021) [16] 獨立於政府與市場運作之外的團體或組織。 [17] PDPC, Guide to Data Sharing (2018), https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Data-Sharing-revised-26-Feb-2018.pdf (last revised Jun. 8, 2021). [18] 鄭鴻達,〈政院BTC閉幕 吳政忠:推智慧醫療沙盒、生醫條例修法〉,聯合新聞網,2021/09/01,https://udn.com/news/story/7238/5715580(最後瀏覽日:2022/06/13)。
何謂美國NITRD計畫 ?美國NITRD計畫係指支持「網絡運作與資訊科技研發計畫(Networking and Information Technology Research and Development,NITRD)」之政府補助計畫。美國國會推動所謂的「網絡運作與資訊科技研發現代法(Networking and Information Technology Research and Development Modernization Act)」新法案,藉此取代1991年通過的高速運算法(High Performance Computing Act),進行現代化修法。新法將用來繼續支持「網絡運作與資訊科技研發計畫(Networking and Information Technology Research and Development,NITRD)」之政府補助計畫,統整21個聯邦行政機關用於發展資通訊科技之業務與預算,提升政府整體效率。藉由補助學校之外,以公私協力之方式補助企業發展非加密網路、電腦、軟體、資安及相關資訊科技,將藉由加速基礎建設發展,強化資安和隱私保護之資通訊科技。但補助主軸將取代舊法對高速運算電腦研發之重視,轉為重視發展虛實融合系統(Cyber-Physical System,CPS),以利鋪設大數據或物聯網發展所需之資通訊科技基礎建設。而這些資通訊科技的重要性不僅只是影響一般的資通訊科技發展,更能協助其他許多科技及工程領域加速發展,包括從太空科技到生技研發等。