人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

隸屬計畫成果
AI領航推動計畫(1/1)_AI 新創領航
 

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

資訊工業策進會科技法律研究所
蔡宜臻法律研究員
2018年11月27日

壹、事件摘要

  美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。

  本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。

貳、重點說明

  2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。

  根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體:

  1. 行政管理目的[2];或
  2. 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或
  3. 目的在於進行電子化的個人健康紀錄[4];或
  4. 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或
  5. 同時符合以下四點之軟體:

    (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]

    (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]

    (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]

    (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]

  雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。

  CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]

  1. 該軟體功能之目的或用途;及
  2. 預期使用者(例如超音波技師、心血管外科醫師);及
  3. 用於產生臨床建議的原始資料(例如患者的年齡和性別);及
  4. 臨床建議產生背後之邏輯或支持證據

  後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。

  由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]

  另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]

參、事件評析

  《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。

  然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮:

一、「理解」演算法?

  根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17]

二、如何要求演算法透明度?

  指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]

三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?

  FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。

肆、結語

  隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。

  然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。

[1] 21 U.S. Code §360j

[2] FD&C Act Sec. 520(o)(1)(A)

[3] FD&C Act Sec. 520(o)(1)(B)

[4] FD&C Act Sec. 520(o)(1)(C)

[5] FD&C Act Sec. 520(o)(1)(D)

[6] FD&C Act Sec. 520(o)(1)(E)

[7] FD&C Act Sec. 520(o)(1)(E)(i)

[8] FD&C Act Sec. 520(o)(1)(E)(ii)

[9] FD&C Act Sec. 520(o)(1)(E)(iii)

[10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii)

[11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018)

[12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8

[13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[15] 21th Century Cures Act, Sec. 3060(b)

[16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018)

[17] Id.

[18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018)

[19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

相關連結
相關附件
※ 人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8185&no=57&tp=1 (最後瀏覽日:2025/09/18)
引註此篇文章
你可能還會想看
美國國防部發布《國防部資訊技術發展戰略》,以促進IT變革並為未來奠定基礎

美國國防部(Department of Defense, DoD)於2024年6月25日發布「關鍵點:國防部資訊技術發展戰略」(Fulcrum:DoD Information Technology (IT) Advancement Strategy),將持續促進DoD之IT變革,並為未來奠定基礎。 本戰略描述作戰人員在推動IT方面應達成之目標與重要性,並列出提供聯合作戰IT能力、資訊網路與運算現代化、最佳化IT治理、栽培第一數位人力等四大目標(Line of Effort, LOE),簡述如下: (1)提供聯合作戰IT能力(Provide Joint Warfighting IT Capabilities):在現今不斷變化且充滿競爭的全球環境中,該目標以使用者為中心,提供具功能性、可擴增、永續且安全之IT功能。並以改善作戰人員可用資訊為重點,以利在快節奏、多領域(multi-domain)作戰中獲得決策與競爭優勢。 (2)資訊網路與運算現代化(Modernize Information Networks and Compute):該目標著重於迅速滿足任務與商務需求,利用卓越技術與以資料為中心的零信任(Zero Trust)資通安全方法,提供安全且具更快資料傳輸速度、更低延遲與高度彈性的現代化網路。 (3)最佳化IT治理(Optimize IT Governance):該目標將提高傳送效率、節省成本,且透過從治理到資料獲取系統的簡化政策,以轉變治理制定更好的決策,包括使用強大資料功能。 (4)栽培頂尖的數位人才(Cultivate a Premier Digital Workforce):該目標將確保作戰人員為新興技術之布署做好準備,並持續致力於識別、招募、發展並留住最佳數位人才。其擴展DoD網路人力框架(DoD Cyber Workforce Framework, DCWF),著重於更廣義的數位人力,包括資料、人工智慧、軟體工程的工作角色。

愛沙尼亞首創「數位遊牧簽證」吸引高收入高專業的數位遊牧民族

  2020年6月3日,愛沙尼亞議會通過了「外國人法(Aliens Act)」修正案,批准了全球首創專為「數位遊牧民族(Digital Nomads, DN)」設計的「數位遊牧簽證(Digital Nomad Visa, DNV)」,並於同年8月1日正式開辦。   「數位遊牧民族(DN)」為近年來興起的一種工作與生活型態,意指無需固定的工作時間與地點,只要有網路就能工作,通常是邊工作邊旅遊、經常在各國移動的生活型態,一般傳統的工作簽證或旅遊簽證較難直接適用。   今年因COVID-19疫情影響,許多人轉為遠距工作,也使更多人成為DN。而以數位治國聞名全球的愛沙尼亞,於2014年推出e-Residency(數位公民計畫)向全球招收數位公民後,進一步推出「數位遊牧簽證(DNV)」。DNV申請人可以是受雇者、企業經營者或是自由工作者,必須為外國企業工作、經營外國企業或是客戶位於國外(但不禁止在當地兼職);其次,申請人必須證明近6個月每月3,504歐元(約新臺幣12萬元)的收入,取得DNV者即可到當地居住一年。該政策看重其高收入、高消費能力,以及高專業性,能在IT、金融、行銷或相關領域獨立工作,為當地科技業提供創意與技術,帶動產業、增加產值;其在境內期間的收益亦可成為充實國家稅捐的標的,在經濟上具有正面效益,在社會上亦可增加多元性、開拓國際事業,並提升國際知名度。

美國提出壟斷威攝法案

  美國參議院在2019年7月23日,於第116屆國會中審查了兩次「壟斷威攝法案」(The Monopolization Deterrence Act),相當於台灣法案經過二讀。提出者是參議院司法委員會反托拉斯、競爭政策和消費者權益小組之成員,克洛布查爾,他認為聯邦執法人員發現非法壟斷行為之時,需要採取果斷行動以確保制止這種行為,但僅僅是禁制令不足以阻止這種非法行為的發生,尚需更好的立法。   本法將賦予司法部和聯邦貿易委員會權利,對壟斷犯罪尋求懲罰性罰款,其目的係為司法部和聯邦貿易委員會提供額外的執法工具,針對個別違規行為制訂補救措施,平衡其嚴重的犯行,並希冀能有效制止未來之非法行為。原法律規定個人違反最高可罰一百萬美元,企業最高可以罰一千萬美元,國會調查後認為原法律規定之罰款不足以阻止壟斷行為,因為獲利可能比罰款更多。   有關「壟斷威攝法案」之修正內容大略包含: 每個違反本條規定的人,必須負擔民事罰款,該罰款不大於個人上一年度在美國的總收入中的15%。從事非法行為之期間,所有交易、貿易行為收入的30%。 委員會針對以不正當方法競爭違反謝曼爾法案第二條的個人、合夥企業或公司,可以在美國地方法院提起民事訴訟,並對此種行為處以民事罰款。 任何個人、合夥企業或公司被發現違反了謝曼爾法案第二條,其民事罰款不大於個人、合夥企業、公司上一年度在美國的總收入的15%。從事非法行為之期間,與非法行為有關之商業活動中之個人、合夥企業或公司在美國之總收入的30%。 在聯合民事處罰準則中,有規範總檢察長和聯邦貿易委員會在計算民事罰款時,必須考慮之相關因素,有以下七項,其一,受影響的商業量;其二,違法行為的持續時間和嚴重性;其三,為隱瞞違法行為而採取或試圖採取之任何行動;其四,違法行為嚴重或明顯違法之程度;期五,是否將民事處罰與針對違法行為之其他救濟相結合,包括結構性救濟、行為條件、非法所得之歸還;其六,先前是否曾從事過相同或類似之反競爭行為;其七,是否違反先前之法令或法院命令該為之行為。

美國維吉尼亞州消費者資料保護法

  2021年3月2日美國維吉尼亞州州長簽署了維吉尼亞州消費者資料保護法(Virginia Consumer Data Protection Act),是繼加州之後,第二個自行制定相關規範並且採用的州,預計在2023年1月正式生效。   該法在主軸上與加州消費者隱私保護法相去不遠,其為消費者提供六項主要權利,包括近用權、刪除權、資料可攜權、選擇退出權、更正權,以及申訴在合理期間內未獲妥適處理之再申訴權;又或者在義務上要求企業進行資料的蒐集、處理或利用時,需經當事人同意並且符合合理利用與必要範圍之限制,亦要求企業建立技術保障管理機制,以及向消費者提供隱私權政策。   該法與加州消費者隱私保護法也有些許不同之處,例如,該法並無賦予人民為一切訴訟行為之權,訴訟權掌握在檢察總長手中、該法案適用主體必須是控制或處理十萬筆以上消費者個人資料之企業,或是總收入50%來自於利用消費者個人資料,且該資料量總數達二萬五千筆以上之企業,相比加州消費者隱私保護法適用主體之資格更為寬鬆。無論就形式上或實質上而言,維吉尼亞州消費者資料保護法普遍被認為比加州消費者隱私保護法更加友善企業,並且廣泛得到亞馬遜等相關科技行業的支持。   在數位科技發展下,美國的紐澤西州、猶他州,以及許多其他州政府,紛紛考慮進行相類似之資訊隱私保護立法,此一趨勢發展已然勢不可擋。

TOP