人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

隸屬計畫成果
AI領航推動計畫(1/1)_AI 新創領航
 

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

資訊工業策進會科技法律研究所
蔡宜臻法律研究員
2018年11月27日

壹、事件摘要

  美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。

  本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。

貳、重點說明

  2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。

  根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體:

  1. 行政管理目的[2];或
  2. 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或
  3. 目的在於進行電子化的個人健康紀錄[4];或
  4. 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或
  5. 同時符合以下四點之軟體:

    (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]

    (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]

    (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]

    (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]

  雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。

  CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]

  1. 該軟體功能之目的或用途;及
  2. 預期使用者(例如超音波技師、心血管外科醫師);及
  3. 用於產生臨床建議的原始資料(例如患者的年齡和性別);及
  4. 臨床建議產生背後之邏輯或支持證據

  後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。

  由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]

  另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]

參、事件評析

  《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。

  然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮:

一、「理解」演算法?

  根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17]

二、如何要求演算法透明度?

  指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]

三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?

  FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。

肆、結語

  隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。

  然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。

[1] 21 U.S. Code §360j

[2] FD&C Act Sec. 520(o)(1)(A)

[3] FD&C Act Sec. 520(o)(1)(B)

[4] FD&C Act Sec. 520(o)(1)(C)

[5] FD&C Act Sec. 520(o)(1)(D)

[6] FD&C Act Sec. 520(o)(1)(E)

[7] FD&C Act Sec. 520(o)(1)(E)(i)

[8] FD&C Act Sec. 520(o)(1)(E)(ii)

[9] FD&C Act Sec. 520(o)(1)(E)(iii)

[10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii)

[11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018)

[12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8

[13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11

[15] 21th Century Cures Act, Sec. 3060(b)

[16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018)

[17] Id.

[18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018)

[19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

相關連結
相關附件
你可能會想參加
※ 人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8185&no=57&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
美國《現在行動法》(MOBILE NOW Act)

  美國《現在行動法》(MOBILE NOW Act)全名為《創造無線寬頻投資機會暨減少過度且不必要之障礙法》(Making Opportunities for Broadband Investment and Limiting Excessive and Needless Obstacles to Wireless Act),於2018年3月23日由美國總統簽署生效。《現在行動法》(以下簡稱本法)立法目的在於確保頻譜資源有效利用與建構未來無線通訊基礎建設的法制框架,具體措施包含訂定頻譜釋出目標、確認毫米波(millimeter wave,對應頻率為30至300GHz)頻譜商用可能性、訂定頻譜釋照政策規劃、簡化通訊基礎建設流程,以及確保鄉村無線通訊技術的發展等。   依據本法要求頻譜主管機關應完成三大任務,包含:一、依本法第603(a)條第1項,在2022年12月31日前,主管機關應釋出至少255MHz的頻譜提供予固定與行動無線寬頻使用。二、依本法第604(a)條,聯邦通訊委員會(Federal Communications Commission, FCC)應在本法施行後兩年內完成在42000至42500MHz間的毫米波進階無線通訊服務及操作規範。三、針對當前已高度使用的3GHz頻段,主管機關應在本法施行後24個月內完成3100MHz至3550MHz間頻段的影響分析及商用可能性報告,以及在本法施行後18個月內完成3700MHz至4200MHz間頻段的公眾意見徵詢,並提交對聯邦機構影響分析及商用可能性報告。透過上述三大任務完成頻譜規劃與商用可能性評估,輔以完善頻譜釋照政策及簡化流程,創造吸引電信業者投資次世代通訊技術之誘因。   美國參議院於2019年12月5日針對本法施行後的辦理情形,召開「次世代通訊技術革新:《現在行動法》落實情形」聽證會,會議中強調《現在行動法》的落實與確保美國次世代通訊技術的領先有密切相關,因此透過本法移除頻譜規劃與分配產業商用過程中的障礙至關重要,本法使美國得以在全球5G通訊技術競賽中處於領先地位;在聽證會中肯定FCC在毫米波頻譜拍賣中的貢獻,並期許FCC與國家電信暨資訊管理局(National Telecommunications and Information Administration, NTIA)能夠藉由落實本法來確保頻譜的有效規劃與分配,進一步維持美國在5G通訊技術發展的領先地位。

中國衛生部發布「抗菌藥物臨床應用管理辦法」

  長久以來,中國民眾對於抗菌藥物(如抗生素等)存有高度的依賴性,造就了國內規模龐大的抗菌藥物市場,依據中國衛生部統計,中國民眾對抗菌藥物的人均消費額幾乎是美國民眾的10倍。對此,世界衛生組織早於2011年4月7日便正式提出警告與呼籲,若中國未能控制抗菌藥物濫用的情況,很快將面臨「無藥可用」的窘境,並演變為全球人類的災難。   為扭轉前述抗菌藥物濫用狀況,中國衛生部於2012年4月24日正式發布了「抗菌藥物臨床應用管理辦法」(以下稱管理辦法),分別對於抗菌藥物的使用及醫療院所之管理制度作了如下的完整規範: 1. 對抗菌藥物採分級管理制,分為「非限制使用級」、「限制使用級」及「特殊使用級」三類,並要求醫療院所依此分類,擬定「抗菌藥物供應目錄」,凡具有同一通用名稱者,其注射型和口服型各不得超過兩種、具有相似或相同藥理學特徵的藥物亦不得重複列入。 2. 依上述分級對抗菌藥物作臨床使用管理:「限制使用級」者,只有當發生嚴重感染、免疫功能下降合併感染,或病菌只對限制級藥物有反應時,才允許使用;「特殊使用級」者,非經醫療院所內設置的「抗菌藥物管理工作機構」同意,不得使用;惟若係為搶救生命垂危的病患或其他緊急情況下,可以越級使用,但須於24小時內補行程序。 3. 各院所必須設置「抗菌藥物管理工作機構」或專責人員,負責制定抗菌藥物管理制度、擬定「抗菌藥物供應目錄」,並建立細菌抗藥預警制度。   管理辦法將於2012年8月起正式施行,一般預料將有助於改善中國抗菌藥物濫用的現象,然用藥限制也必定衝擊現今許多對抗菌藥物產品銷售已存有高度依賴性的企業;相反地,由於管理辦法中明文將「具有抗菌作用的中醫製劑」排除於管制範圍外,或許將促成抗菌中醫藥品的發展契機,而值得持續觀察之。

日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標

  2017年6月9日,日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標,藉由第四次產業革命,包括IoT、大數據、人工智慧及機器人等創新產業,具體解決每個人都會面臨的社會課題(例如少子高齡化)。「未來投資戰略2017」內容包含四個面向,分別為Society 5.0戰略領域、Society 5.0橫向課題、建構區域經濟的良好循環系統及海外成長市場納入等。 一、Society 5.0戰略領域:針對健康壽命的延伸、移動革命的實現、次世代供應鏈、舒適的基礎建設與城市規劃以及FinTech金融科技。 二、Society 5.0橫向課題:分為創造價值泉源及建構價值最大化兩部分。創造價值泉源方面,分別提出數據活用的基礎與制度建構、教育及人才強化、創新與風險的良好循環系統;建構價值最大化方面,則有監理沙盒的創設、規範改革.行政手續簡化.IT化的整體推進、「賺錢力」的強化──從形式到實質的企業治理改革、公共服務與資產的民間開放、國家戰略特區的加速推進、網路安全以及共享經濟之相關政策等。 三、建構區域經濟的良好循環系統:中小企業與小規模事業的革新並活化服務產業與提升生產力、農林水產業的強化與展開以及觀光.體育.文化藝術的實行。 四、海外成長市場的納入:基礎建設系統輸出、經濟合作交流、連接數據流通活用與形成國際共通規則、中小企業的海外支援、日本魅力活化政策。

台灣每人二氧化碳排放量逐年增加 全球第二十二名

  台灣自一九九○年至二○○四年止,平均每人排放量自五‧五七公噸大幅增加至十一‧五九公噸,以國際能源總署 (IEA )截至2002年統計,全球排放量前三名為美國、中國及俄羅斯,台灣則排名全球第22名。   主計處表示,依 IEA 統計資料庫顯示,二○○二年全球二氧化碳排放量前六名為美國(57.1億噸,占全球23.3﹪)、中國(34.7億噸,占14.2﹪)、俄羅斯(15.2億噸,占6.2 ﹪)、日本(11.8億噸,占4.8 ﹪)、印度(10.5億噸,占4.3﹪)及德國(8.5億噸,占3.5 ﹪)。台灣則排第 22 名(1990年為第28名),排放量占全球總量約1﹪,而經濟發展程度與我國相近的南韓、新加坡排名分別為第9名(4.7億噸,占1.9﹪)及52名(5500萬噸,占0.2﹪)。    行政院主計處據工研院能源與資源研究所統計,公佈最新「我國燃料燃燒排放二氧化碳」概況,台灣溫室氣體排放以二氧化碳為最大宗,佔八成以上,至二○○四年為 2.6億噸。   主計處指出,為抑制人為溫室氣體排放導致全球氣候變遷加劇現象,聯合國在一九九二年通過「聯合國氣候變化綱要公約」,且為落實排放管制工作,具有約束效力的「京都議定書」,已在今年二月十六日正式生效,期使在二○○八至二○一二年間,六種溫室氣體排放量平均應削減至比一九九○年低五‧二 %水準。在全球持續增溫、海平面上升及氣候變遷加劇下,台灣雖非京都議定書締約國,但政府相關部會順應國際永續發展潮流,正積極落實檢討溫室氣體排放減量政策。

TOP