人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例
資訊工業策進會科技法律研究所
蔡宜臻法律研究員
2018年11月27日
壹、事件摘要
美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。
本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。
貳、重點說明
2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。
根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體:
(1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。
(2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。
(3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。
(4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。
雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。
CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]:
後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。
由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。
另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。
參、事件評析
《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。
然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮:
一、「理解」演算法?
根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17]
二、如何要求演算法透明度?
指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。
三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?
FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。
肆、結語
隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。
然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。
[1] 21 U.S. Code §360j
[2] FD&C Act Sec. 520(o)(1)(A)
[3] FD&C Act Sec. 520(o)(1)(B)
[4] FD&C Act Sec. 520(o)(1)(C)
[5] FD&C Act Sec. 520(o)(1)(D)
[6] FD&C Act Sec. 520(o)(1)(E)
[7] FD&C Act Sec. 520(o)(1)(E)(i)
[8] FD&C Act Sec. 520(o)(1)(E)(ii)
[9] FD&C Act Sec. 520(o)(1)(E)(iii)
[10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii)
[11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018)
[12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8
[13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11
[14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11
[15] 21th Century Cures Act, Sec. 3060(b)
[16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018)
[17] Id.
[18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018)
[19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
「綠色按鈕」(Green Button)已於今年(2012)1月正式啟動,運用新的智慧電網科技,容許約六百萬加州用電戶在網站上按下一個按鈕後,便可及時獲取他們的詳細能源使用資訊,同時,其他加州地區公用事業業者也承諾在同年內讓另外十二萬用電戶也可得到同樣的服務,歐巴馬政府同時也於今年3月22日宣布,全美其他地區九個主要公用事業業者也承諾加入「綠色按鈕」的行動中,提供這個新興服務給超過一千五百萬用電戶,許多其他相關業者也宣布加入行動,積極投入發展與「綠色按鈕」相容的應用軟體與服務,提供更多節約能源的方法。 「綠色按鈕」這個行動是由智慧電網互通性專家諮詢小組(SGIP)所主導,這個由美國國家標準與技術研究院(NIST)創立於2009年的工作小組,成員超過750個不同種類的相關業者及政府機關,目的在於致力協調智慧型電網發展的標準與互通性。而為了響應政府的號召—希望業者能提供消費者易懂的能源使用資訊,藉由淺顯易懂的方法讓消費者可以便利地獲取自己對於能源的使用數據,進而設法使消費者減少在能源上的花費,乃係美國政府於去年6月(2011)提出的21世紀智慧電網政策綱領中重要的政策之一。 美國環保署也已經加入了「綠色按鈕」的行列,將利用「綠色按鈕」的數據來幫助商業建築所有人評估他們的耗能與其推動的「能源之星」(Energy Star)認證計畫相結合,給予「能源之星」績效分數(performance scores)。
簡介美國《營業秘密案件管理的司法指引》2023年7月13日,美國聯邦司法中心(Federal Judicial Center)發布《營業秘密案件管理的司法指引》(Trade Secret Case Management Judicial Guide)。該指引是由美國聯邦司法中心與Berkeley大學合作出版,旨在提供處理聯邦營業秘密訴訟的法官參考,並為訴訟當事人提供營業秘密案件各階段的注意事項。其中特別指出識別營業秘密及證據開示在訴訟中的重要性。 1.在識別營業秘密的部分 《營業秘密案件管理的司法指引》指出在訴訟中,識別應達到「足以與已公開的資訊進行比較」的程度。而識別程度應具備以下兩個要件,包括: (1)使被告了解原告所主張之營業秘密範圍; (2)使被告能確定證據開示項目與本案所涉及之營業秘密間的關聯性。 據此,若原告僅識別其所主張之營業秘密的類別不足以識別其營業秘密。為達到《營業秘密案件管理的司法指南》所要求之識別程度,企業應盤點其擁有的營業秘密並留存產出紀錄,以利後續訴訟中能具體識別其營業秘密。 2.在證據開示的部分 《營業秘密案件管理的司法指引》指出證據開示的範圍會受到不同因素影響,比如各類型的特殊紀錄、個人隱私權是否受到保護等。為了能在證據開示階段取得優勢,企業應與員工簽署協議,明確約定其於機密資訊有外洩之虞時,有權對員工之個人設備等進行調查。 由上述內容可以發現,若要在美國營業秘密案件中取得優勢,建議企業採取識別所擁有的營業秘密、保存產出紀錄、與員工簽署相關協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟網路暨資訊安全局發布「重要基礎設施資訊安全培訓需求盤點報告」加強重要部門資訊安全作業歐盟網路暨資訊安全局於2017年12月7日發布「重要基礎設施資訊安全培訓需求盤點報告」(Stocktaking of information security training needs in critical sectors)之文件,點出各重要基礎設施之「電腦安全事件反應小組」(Computer Security Incident Response Teams, CISRT)所必須接受之資安訓練種類。 歐盟之網路與資訊系統安全指令(The Directive on security of network and information systems, NIS Directive)規範各成員國之重要服務營運者(operator of essential service)必須確認出哪些服務於維繫社會與經濟活動上具備重要性。被認定具備重要性之部門如下:能源、運輸、銀行業、金融市場基礎設施、健康照護部門、飲用水供應與分配、數位基礎設施。 此份報告指出,該重要性部門之資安等級需求並不盡相同,因此導致各部門面對資安事件之準備無法相提並論。例如,能源產業會用到SCADA系統,而金融市場基礎設施則普遍沒有相關需求。而由於NIS指令將上述七種部門列為資訊安全維護最高層級,故此份報告目的係確認該部門當前的處境,並與現階段可取得之網路安全訓練對照,進一步具體檢視各重要部門是否有其他額外的網路安全訓練需求。 我國行政院於民國106年4月公布之資通安全管理法草案要求關鍵基礎設施提供者應訂定、修正、實施資通安全維護計畫,並向中央目的事業主管機關或直轄市、縣(市)政府提出該計畫之實施情形,在未來實際落實各重要性設施之資安維護以及資安小組訓練時,須意識到各重要性設施之資訊安全需求差異性,及相關人員必須針對不同單位而受不同之訓練。
Google公司為強化專利組合,再下一步棋谷歌公司(下簡稱Google)已經證實收購來自IBM公司共217篇專利;其中188篇專利為IBM已取得之專利,29篇專利為IBM公司申請中的專利。但Google拒絕透露收購金額。 這些專利涵蓋了許多不同的技術,主要的專利是與資料處理有關,例如電子郵件處理、線上日曆,以及在不同裝置間轉換web apps等功能。其中一篇專利預期用以提升Google的社群網路(Google+)之搜尋功能。 其實從去年開始,Google已經收購了來自IBM公司總共約2000篇的專利,這些專利內容與手機軟體、電腦的硬體設備,以及處理器有關。此外,Google去年也以鉅額收購Motorola公司,背後一個很大的原因可能是跟Motorola所擁有的2萬多篇專利有關。 目前許多科技龍頭公司,已有例行性地藉由採取專利訴訟以取得市場地位的趨勢。例如Apple已指控包括HTC等智慧型手機供應商,因使用Google所擁有的Android手機操作系統,而涉嫌侵害Apple的諸篇專利;在與Apple的爭訟過程中,HTC獲得來自Google收購Motorola後所獲得之專利。 Google的執行長佩吉(Larry Page)在宣布收購Motorola時曾經表示,藉由收購Motorola可強化Google的專利組合(patent portfolio),協助Google公司對抗來自Apple或其他公司的競爭威脅。 Google公司透過持續不斷地強化專利組合,拓展專利領域,企圖在這些因專利涉訟的智慧型手機市場中,穩固其市場霸主地位。