地理空間資料(Geospatial Data)

  Google地圖、GPS導航、Facebook定位打卡、「台北等公車」、Uber叫車,「地理空間資料」(Geospatial Data)的運用已經滲透現代人的生活。然而,究竟什麼是「地理空間資料」?所謂「地理空間資料」,依美國的《2018年地理空間資料法》 (Geospatial Data Act of 2018)的定義:「與地球上緊扣相關的位置資訊,包含辨識地球上的地理位置和自然或結構特徵與疆界。在向量資料組(Vector Dataset)中,大致以點、線、多邊形或複雜的地理特徵或現象呈現。該資料可能透過遙測(Remote Sensing)、製圖(Mapping)和量測(Surveying)科技取得。」

  地理空間資料涉及地理學、地圖學(Cartography)、地理資訊系統學(Geographical Information Science, GIScience)及許多相關的科學領域。互動式的時間與空間功能,成就了當今混和空間與時間的資訊爆炸,更是五花八門運用地理資訊的手機應用程式之基礎等。應用場景涉及政府、商業、社會各層面,順利達成多元且重要的任務,例如:疾病通報、環境監測和公共安全。2017年Google於委託AlphaBeta的分析報告指出:「全球地理空間資料相關服務每年有四千億美元的產值、節省消費者超過五千五百億美元的燃料和時間成本、直接創造四百萬份工作機會。透過電子地圖服務,如:提高顧客流量的免費行銷工具Google My Business,更促使小型商家產生1.2兆美金的營業額。」

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 地理空間資料(Geospatial Data), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8202&no=57&tp=5 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
PayPal 要求電子信箱服務提供業者封鎖未附有電子簽章的信件

  E-bay集團旗下的線上付款服務公司PayPal的代表律師Joseph E. Sullivan 於三月二十七日在倫敦舉辦的第五屆國際網路犯罪討論會議( International E-Crime Congress )中,提案要求電子信箱服務提供業者透過封鎖未附有電子簽章(Digital Signature)信件之方式,減少網路釣魚騙局(Phishing)的產生。該提案主要目的在透過電子信箱服務提供業者過濾垃圾郵件篩選系統( Spam Filters),以防堵看起來幾可亂真的網路釣魚郵件。雖然參與該國際網路犯罪討論會議的業者及政府機構並未對該提案達成共識,但是PayPal公司已和Google公司旗下的電子信箱服務Gmail達成協議,加強過濾垃圾郵件的篩選。   PayPal 是最常被詐騙集團利用偽裝郵件(Spoofing Emails)的受害公司之一,目前詐騙集團以偽裝公司郵件的技術進行網路釣魚,以騙取個人資料或帳號密碼來謀利。Paypal目前已使用數項電子簽章的安全技術,其中包括Yahoo!公司所研發的網域認證鑰匙(DomainKeys),該技術能有效地判斷寄件者的網域(Domain)是否為偽造及寄出信件是否來自偽造的網域。   目前網路釣魚的網站如雨後春筍般地出現,根據一份由國際業者及政府機構聯合提出之「反網路釣魚世界組織」(Anti-Phising World Group)報告指出,統計至今年一月份為止,全世界的詐騙網站已高達兩萬九千九百三十個。故PayPal特別對反制網路詐騙集團利用即可亂真的網路釣魚郵件,將上述提案於國際會議中提出討論 。

英國國家醫療服務體系(NHS)公布國家資料退出(Opt-out)操作政策指導文件

  個人健康資料共享向為英國資料保護爭議。2017年英國資訊專員辦公室(ICO)認定Google旗下人工智慧部門DeepMind與英國國家醫療服務體系(NHS)的資料共享協議違反英國資料保護法後,英國衛生部(Department of Health and Social Care)於今年(2018)5月修正施行新「國家資料退出指令」(National data opt-out Direction 2018),英國健康與社會照護相關機構得參考國家醫療服務體系(NHS)10月公布之國家資料退出操作政策指導文件(National Data Opt-out Operational Policy Guidance Document)規劃病患退出權行使機制。   該指導文件主要在闡釋英國病患退出權行使之整體政策,以及具體落實建議作法,例如: 退出因應措施。未來英國病患表示退出國家資料共享者,相關機構應配合完整移除資料,並不得保留重新識別(de-identify)可能性; 退出權行使。因指令不溯及既往適用,因此修正施行前已合法處理提供共享之資料,不必因此中止或另行進行去識別化等資料二次處理;此外,病患得動態行使其退出權,於退出後重新加入國家資料共享體系;應注意的是,退出權的行使,採整體性行使,亦即,病患不得選擇部分加入(如僅同意特定臨床試驗的資料共享); 例外得限制退出權情形。病患資料之共享,如係基於當事人同意(consent)、傳染病防治(communicable disease and risks to public health)、重大公共利益(overriding public interest)、法定義務或配合司法調查(information required by law or court order)等4種情形之一者,健康與社會照護相關機構得例外限制病患之退出權行使。   NHS已於今年9月完成國家資料退出服務之資料保護影響評估(DPIA),評估結果認為非屬高風險,因此不會向ICO諮詢資料保護風險。後續英國相關機構應配合於2020年5月前完成病患資料共享退出機制之建置。

歐洲汽車供應商協會發表關於標準必要專利之政策指南,以期有關單位能給予汽車產業更明確的指示

歐洲汽車供應商協會(European Association of Automotive Suppliers,俗以CLEPA簡稱之)於2023年3月7日發表〈關於標準必要專利之政策指南—一個可因應汽車產業數位轉型現象的歐盟專利規則〉(Standard Essential Patents Policy guidelines—For an EU patent regulation that adapts to the digital transformation in the mobility ecosystem),以期有關單位能給予汽車產業更明確的指示,舉凡:SEP專利權人可向何人為授權、「合於FRAND原則之授權條款」應如何被認定等。 CLEPA提及,由於在一技術領域中有SEP時,其他的技術無「迴避設計」(design-around)可能性,而必得實施該被選為標準之技術,故在該技術領域中,無其他技術可與「受該SEP保護」的技術相抗衡;是以該SEP的價值必須被審慎且精確評估。此外,CLEPA指出,由於汽車產業會投資、研發、銷售有助於未來「移動性」(mobility)發展的下世代產品,故此產業與智慧財產權議題有高關聯性(例如:此產業每年會申請超過39,000筆專利權),應予其在SEP議題上有足夠的明確性(certainty)及可預測性(predictability),使其在「投資於廣泛實施標準的『新技術』」上,更可依循。而創建一個「利益平衡」(balanced)的環境,將有助於授權雙方進行合於「誠信原則」(good-faith)的授權協議。 CLEPA為以上目的,提出五點建議: (1)應有一「歐盟層級」的立法 一個「歐盟層級」(EU-level)的法架構體系是較足以為SEP專利權人及專利實施者間,提供較「利益平衡」的環境,且較可抑制不公平的SEP授權行為。 (2)「供應鏈中任一層級,均可得授權原則」 凡任何欲得授權者,不論其位於供應鏈中何層級,均應予其有「在符合FRAND原則」下,被授權的機會。又,由於一技術之所以會成為「標準」,係因被「商討」(coordination)而出,倒不一定是因其在市場競爭上,真的有大勝於其他技術的優勢,故授權權利金應僅可反映該技術本身的價值,而不可將「因標準化而可帶來的其他廣大利益」摻入。 (3)對於SEP授權條款應有明確指示 政策制定者及各「標準制定組織」(Standard Setting Organization, SSO)應對「何謂合於FRAND原則之授權條款」提供指南;此外,也應提出就一SEP及其有被納入的「專利組合」(portfolios)的評價方法。 (4)供應鏈中的授權狀況應明瞭 專利實施者應清楚明瞭其是否應獲授權,或其上游元組件供應商是否已獲授權。 (5)應有完整的法體制 政策制定者應制定法體制或應提供關於法體制的指南,以避免SEP專利權人不當申請「禁制令」(injunction),以強使授權協議之可被達成。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP