美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)

  美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。

  聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。

  政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。

  因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下:

  1. 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。
  2. 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。
  3. 要求聯邦政府利用開放資料來強化其決策機制。
  4. 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。)
  5. 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。

相關連結
相關附件
※ 美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8210&no=55&tp=1 (最後瀏覽日:2026/01/30)
引註此篇文章
你可能還會想看
澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架

澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).

2016年生物支付技術將可能取代傳統支付型態

  根據美國公共電視台在2016年1月6日的新聞,指出生物支付將可能成為新興支付工具。生物支付之定義為利用生物辨識(biometric)技術驗證個人生物特徵,諸如:指紋、虹膜等進行支付。採用生物支付技術,未來將無須使用信用卡或行動裝置,僅需要個人生物特徵之辨識即可完成交易。此轉變將使未來交易更加快速、便利,但同時,生物支付的安全性卻也不無疑義。   即便生物辨識屬於高層級的資訊安全保護機制,但水能載舟,亦能覆舟。生物辨識利用生物不可變之特性進行身分識別,涉及高度個人隱私,為妥善保護個人資訊安全,需訂立生物辨識相關規範加以管制,否則將衍生許多法律問題。   例如:在2015年6月,美國線上出版商Shutterfly公司被控訴違法蒐集個人資料。原告稱其並非Shutterfly公司之註冊使用者,也從未同意其生物辨識資訊被該公司蒐集,但其面紋(Face print)卻被上傳至該公司網站,並標註姓名,儲存在自動針對相片標記臉部辨識系統之資料庫。 依據BIPA針對生物辨識定義及蒐集規範: 1.第10條: 生物辨識之態樣,包含視網膜、虹膜掃描、指紋或是手部、臉部外觀之掃描,但不包括簽名、照片、用於科學檢測之人體樣本、頭髮顏色等。 2.第15條(a): 規定公司蒐集個人生物特徵資訊應有相關規範供公眾查閱,並應提供生物辨識資訊之保管及銷毀日期及相關資訊。 3.第15條(b)(1): 蒐集生物辨識資訊應告知當事人。   Shutterfly公司提出要求法院不受理之抗辯,主張BIPA規定之臉部外觀,其文意解釋應為物理上個人親自接受掃描所得之資訊,並非原告所主張以照片辨識之臉部外觀,但法院認為Shutterfly之主張並不合理,因此同意受理此案。   觀察該案可發現,儘管生物辨識提高資訊安全之保護,但相關法規範解釋仍待實務完備。另一方面,生物特徵資訊極易被他人蒐集,因此,如何建置蒐集個人辨識資訊及完善相關措施,也是推行生物支付措施所需突破的關口。

數位模擬分身(Digital Twin)

  數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。   於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。

聯邦貿易委員會公布授權學名藥報告,並展開調查及處罰裁決

  美國聯邦貿易委員會(Federal Trade Commission,FTC)鑒於近期授權學名藥(Authorized Generic,指由原專利藥廠於專利到期後自行或授權所推出之學名藥)上市申請頻率遽增,且授權學名藥專利和解協議日多之現況,自今(2009)年起,即積極展開一系列調查行動,先後於3月首度對授權學名藥和解協議案件祭出處罰裁決,並於6月公佈一份有關授權學名藥報告(Authorized Generic: An Interim Report)。   在美國授權學名藥法規(即Hatch-Waxman Act)架構下,首次提出簡易新藥審查申請取得學名藥上市許可之第一申請者(first-filer),得享有180日之市場專屬保護期間,除授權學名藥外,保護期間內其他藥廠一概不得推出相仿學名藥。   美國學名藥市場專屬保護期間之設計,原是希望藉此加速學名藥研發與上市,達到降低藥品取得價格之效,但根據FTC調查顯示,由於授權學名藥在市場專屬保護期間內依法得進入市場,於受到授權學名藥介入競爭之壓力下,第一申請者學名藥零售價格會比原先下降4.2%,經銷價格會下降6.5%,並減少該第一申請者藥廠47-51%的收入。在此背景下,越來越多第一申請者藥廠傾向採擬與原專利品牌藥廠達成延遲學名藥上市協議之策略,藉此互為其利。根據FTC統計,2004-2008年間約有25%的專利和解案件涉及授權學名藥條款,76%的對造為第一申請者學名藥藥廠,其中有25%的和解,是由授權學名藥藥廠與第一申請者藥廠就於一定期間(平均約為34.7月)不進入市場互為承諾。   FTC目前唯一的監管機制,係依據醫療照護現代化法(The Medicare Prescription Drug, Improvement, and Modernization Act of 2003,MMA),要求專利藥廠若與學名藥廠做成任何專利訴訟和解協議或相關協議時,應於協議生效10日內向FTC通報,以供FTC決定是否展開反競爭調查。FTC對於此類協議之審查上,終於今年3月有所進展,宣布必治妥(Bristol-Myers Squibb,BMS)應就其與Apotex公司間所達成專利訴訟和解協議繳交210萬美元。

TOP