美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)

  美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。

  聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。

  政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。

  因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下:

  1. 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。
  2. 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。
  3. 要求聯邦政府利用開放資料來強化其決策機制。
  4. 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。)
  5. 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。

相關連結
相關附件
※ 美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8210&no=55&tp=1 (最後瀏覽日:2025/12/01)
引註此篇文章
你可能還會想看
美國最高法院判決診斷方法不具可專利性

  美國最高法院近日在Mayo Collaborative Services與Prometheus Laboratories一案中判決2項與免疫疾病有關的診斷方法專利無效,業界擔憂該判決將對處於新興發展階段的個人化醫療領域的研發投入與創新有著負面影響。   本案源於Prometheus所擁有的在不同劑量下thiopurine藥物代謝情況的診斷方法專利(由於病患的藥物代謝率不同,因此醫生在判斷特定病患的藥物劑量高低有相當的困難度),Mayo購買使用Prometheus的診斷方法後, 2004年Mayo開始對外販售自己的診斷方法。Prometheus主張Mayo侵害其專利,聯邦地方法院認為該專利建構於自然法則與現象上,因此不具可專利性,但聯邦巡迴上訴法院則有不同的看法,本案因此一路爭執至最高法院。   對於自然法則、現象以及抽象的概念,基於其作為科技發展的基礎工具,為避免妨礙創新發展,一直以來法院都持不具可專利性的看法。在相關的前案中,唯有在自然法則之外,包含創新概念的元素,才能超越自然法則本身而成為專利。本案中最高法院表示,本案專利方法步驟,不符合前述基於創新概念而授與專利的條件,且該方法步驟為該領域人所熟知、常用,授與專利將導致既有的自然法則被不當的受限而影響後續進一步的發現。   評論者表示儘管該判決並未提供一個清楚的判斷標準,但並不因此讓下級法院對這類的個人化醫療專利全數否決。然本案對於可專利性客體的判斷,影響將不僅止於生命科學,進而包括所有涉及可專利性客體的軟體、商業方法類型專利,後續影響值得持續關注。

《2022年保護美國智慧財產法》公布至今,所造成的影響仍有待觀察

繼2023年1月5日美國總統拜登(Joe Biden)簽署《2022年保護美國智慧財產法》(Protecting American Intellectual Property Act of 2022)並生效後,至今尚未見任何根據該法規展開行動的報告,不過各界仍相當關注該法案的動向,因為其與過往的經濟制裁措施有著顯著的差異。 《2022年保護美國智慧財產法》與其他經濟制裁措施之差異包括: 1.僅針對營業秘密之重大竊盜,不包括其他智慧財產權如專利、著作權等; 2.未要求行為人主觀是為他國政府之利益而竊取營業秘密; 3.法規中使用到關鍵術語的標準及定義較少; 4.某些制裁措施具有強制性; 5.制裁的對象不僅包括竊取美國營業秘密者,也包括從他人竊取美國營業秘密中獲利者; 6.營業秘密盜竊行為須有合理可能性或已經對美國國家安全、外交、經濟、金融穩定構成重大威脅。 雖然《2022年保護美國智慧財產法》即將成為重要的政府工具,以解決營業秘密損失及其對國家安全之影響,且允許當事人面臨營業秘密訴訟或威脅時,將制裁措施武器化,但仍有部分問題有待解決,包括: 1.營業秘密受各州法律管轄,各州之管理機構是否會制定自己的營業秘密定義標準? 2.若在訴訟進行期間實施制裁措施,將產生甚麼影響? 3.是否產生《經濟間諜法》(Economic Espionage Act)之待審案件?美國司法部(US Department of Justice)是否必須參與? 4.判斷是否制裁的標準與美國司法部所採用的《經濟間諜法》之標準是否相同?若不同,則差異為何? 5.當事人或法院是否知道判定營業秘密盜竊行為時該適用什麼證據標準?(法規僅規定由總統決定) 6.法院能否將此類制裁措施作為其決策的一部分? 儘管《2022年保護美國智慧財產法》所衍生的問題及將產生的影響尚有待觀察,但建議企業採取下列合規措施,以避免成為美國新制裁措施的目標,包括: 1.制定並實施合規的營業秘密保護政策與程序; 2.對員工進行教育訓練,使其瞭解有關《2022年保護美國智慧財產法》的基礎知識以及對營業秘密之管理要求; 3.對有可能被盜竊營業秘密的流程進行稽核審查。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

美國加州「Asilomar人工智慧原則決議」

  美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。

談美國GMO管理規範之修法趨勢-從「全有全無」到「多階分級」許可管理之制度轉換

TOP