美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。
聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。
政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。
因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下:
韓國政府於2025年1月23日成立國家生技委員會(국가바이오위원회),作為跨部會最高決策機構,整合生技、醫療、食品、能源、環境等領域政策。該委員會將推動《大韓民國生技大轉型戰略》(대한민국 바이오 대전환 전략),聚焦基礎建設、研發創新、產業發展三大轉型,重點分述如下: 1. 基礎建設轉型:韓國將成立「生技聚落協調機構」(바이오 클러스터 협의체),整合20多個生技聚落,讓各聚落共享設備、專家及創業支援,並與全球頂尖生技聚落交流。韓國計畫創造1萬個生技相關就業機會、培育11萬名生技專業人才,並推動生技監管創新。 2. 研發創新轉型:韓國期望透過AI技術應用,將新藥開發的時間與成本減半。此外,政府將提供資料共享的獎勵措施,簡化IRB及DRB審查流程,推動資料導向的生技研發。韓國計畫至2035年在國家生技資料平台上累積1000萬筆生技資料,並建構高效能運算基礎設施以提升分析能力。 3. 產業發展轉型:韓國將透過五個公共CDMO支援生技產業技術產品化,並推動AI導向的「K-BioMADE計畫」,促進生技製造的高速化、標準化與自動化。此外,政府將成立1兆韓元以上的「Mega Fund」,提供金融政策支持。韓國計畫至2032年將CDMO生產能力擴大至2.5倍,確保在全球市場佔據領先地位。 韓國政府擬透過「國家生技委員會」強化公私部門協作、優化法規環境及加速創新技術的商業化,為我國未來生醫政策發展提供寶貴的參考價值,值得持續關注。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
中華人民共和國《出版管理條例》之介紹 歐盟執委會啟動《關於標示與標籤AI生成內容之行為準則》之相關工作,以協助生成式AI之提供者與部署者履行其透明度義務2025年11月5日,歐盟執委會啟動《標示與標籤人工智慧生成內容之行為準則》(a code of practice on marking and labelling AI-generated content,下稱行為準則)之相關工作,預計將於2026年5月至6月間發布行為準則。此行為準則與《歐盟人工智慧法案》(EU AI Act)之透明度義務規定相關。這些規定旨於透過促進對資訊生態系的信任,降低虛假訊息、詐欺等風險。 《歐盟人工智慧法案》第50條第2項及第4項之透明度義務,分別規定 1. 「『提供』生成音檔、圖像、影片或文本內容的AI系統(包括通用AI系統)」的提供者(Providers),應確保其輸出係以機器可讀的形式標示(marked),且可被識別屬於AI所生成或竄改(manipulated)的內容。 2. 「『使用』AI系統生成或竄改以構成深度偽造之影像、音訊或影片內容」的部署者(Deployers),應揭露該內容係AI所生成或竄改。 前述透明度義務預計於2026年8月生效。 後續由歐盟AI辦公室之獨立專家透過公眾資訊與徵選利害關係人意見等方式,推動起草行為準則。此行為準則不具強制性,旨於協助AI系統提供者更有效地履行其透明度義務,且可協助使用深偽技術或AI生成內容的使用者清楚地揭露其內容涉及AI參與,尤其是當向公眾通報公共利益相關事項時。 AI應用蓬勃發展,同時AI也可能生成錯誤、虛構的內容,實務上難以憑藉個人的學識經驗區分AI幻覺。前文提及透過標示AI生成的內容,以避免假訊息孳生。倘企業在資料源頭以標示等手段控管其所使用之AI的訓練資料,確保資料來源真實可信,將有助於AI句句有理、正向影響企業決策。企業可以參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,從資料源頭強化數位資料生命週期之管理。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)