美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)

  美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。

  聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。

  政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。

  因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下:

  1. 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。
  2. 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。
  3. 要求聯邦政府利用開放資料來強化其決策機制。
  4. 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。)
  5. 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。

相關連結
相關附件
※ 美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8210&no=55&tp=1 (最後瀏覽日:2025/12/15)
引註此篇文章
你可能還會想看
德國「真實實驗室」

  德國政府意識到伴隨數位化發展的創新科技和商業模式雖然提供了許多機會,但往往容易對消費者、產業和社會產生顛覆性影響,此類影響通常難以在短期內權衡利弊,從而不易對其訂出具體合適的規範,例如德國新創公司Lilium、奧迪子公司Italdesign、以及歐洲航空巨擘Airbus都有意發展的空中計程車計畫,雖有無限想像空間,但卻很難在短期內評估出可能隨之而來的安全、(空氣或噪音)汙染、就業等方面的不利影響,進而制定出寬嚴適中的規範。有鑑於此,德國聯邦經濟及能源部(Bundesministerium für Wirtschaft und Energie, BMWi)於2018年12月10日提出「真實實驗室戰略」(Reallabore Strategie),旨在營造一個前瞻、靈活、可支持創新想法自由發揮的法規環境,同時也希望藉由在真實實驗室運作所得之經驗數據,了解創新的機會和風險,進而找到正確的監管答案。   「真實實驗室」(Reallabore)係指允許在特定時間及真實環境範圍內,進行創新科技與商業模式發展測試,而無需擔心與現行監管規範有所牴觸的創新試驗制度,其與「生活實驗室」(Living Labs)和「實驗場域」(Experimentierräume)、「沙盒」(Sandbox)、「領航計畫」(Pilot Project)等概念類似,與我國「金融科技創新實驗」及「無人載具科技創新實驗」之制度規範亦有異曲同工之趣,但更著重在探索未來的監管方向,簡而言之,「真實實驗室」就是一個創新想法與監管規範的試驗空間,德國聯邦經濟及能源部(BMWi)為具體傳達其概念,對其特徵作了如下描述:(1)可以進行數位創新試驗的特定時空環境(2)可以支持創新想法自由發揮的法規環境(3)可以從中進行監管學習並確定未來監管方向與具體細節。

新加坡政府推出民眾資料共享平台MyInfo

  新加坡政府在2016年05月05日發表了數位平台「MyInfo」。   新加坡政府推出此一平台的目標是「以數位方式來整合目前的工作,去除現行的不便與散亂,讓民眾與政府打交道時更輕鬆 」。因此,「MyInfo」將每個新加坡公民散在各政府機關間的個人資料整合成單一檔案,使用者也可以自行決定加入額外的資訊,像是年收入、教育程度、就業情況以及家人資料。當民眾需要填寫不同的政府表單時,不需要再一直填寫重複的內容。   新加坡政府表示,每個公民可以自由決定他們要不要註冊MyInfo。當使用者選擇使用這項服務時,相關機關會針對可能被運用的資料先徵詢使用者的同意。   MyInfo計畫是由新加坡財政部與資訊通信發展管理局共同發起。新加坡政府的數位服務團隊在一年前左右開始設計這項服務,目前平台上仍持續在測試並改善使用者經驗。   MyInfo從2016年01月到04月試營運,已經有超過32,000人使用這項服務(佔新加坡總人口0.6%)。在2016年06月之前,MyInfo會提供15項服務,包括註冊公用住宅、更新報稅資料以及求職資訊等。到2018年,所有需要雙認證的數位服務都會整合在MyInfo平台,估計會有200項服務項目。   這個計畫是新加坡「數位政府」(Digital Government)政策的重要拼圖之一。新加坡政府將持續擴大MyInfo的服務項目,希望藉由此服務來蒐整更多資料,並增加可供政府機關間分享的個人資料數目。伴隨愈加豐富的數據資料,各政府部門更能事先了解民眾的需求並提出民眾真正需要的服務。

歐盟法院被遺忘權2017年最新判決:Camera di Commercio di Lecce v. Manni案

  歐盟法院在2017年3月9日針對其於同日所公布的判決發布新聞稿,指出該院認定公司資料登記中的個人資料於此案中並無被遺忘權之適用。   該案件起源於2007年義大利的Manni先生對雷契商業登記處(Lecce Chamber of Commerce)所提之爭訟。在由雷契法院(Tribunal di Lecce)受理的案件中,Manni先生主張其所承接觀光性建案乃因商業登記處之資料清楚顯示其於1992年間擔任負責人的公司倒閉之影響而無法成交。   在一審判決中,雷契地方法院命雷契商業登記處將Manni先生與其之前所任職公司後來進入清算程序之聯結匿名化,並應對其為損害賠償。嗣後,雷契商業登記處向義大利最高法院(Corte suprema di cassazione)提起上訴,該院則決定聲請歐盟法院的先訴裁定(preliminary uuling)程序。   歐盟法院的判決指出:公司登記資料的公開性質,乃基於確保公司間以及與第三人間之法律安定性,特別是對於有意願入股上市公司或股份有限公司的第三人之利益。考量本案所涉法律權利之範圍,以及這些權利限制資料存取的時間在會員國各有所異,歐盟法院認為本案所涉之事實並不足以正當化系爭資料近用之限制,但其亦不排除未來有不同的可能,但須個案判斷。

新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

TOP