美國參議院提出「2019年物聯網網路安全促進法」草案

  自2016年Mirai殭屍網路攻擊事件後,物聯網設備安全成為美國國會主要關注對象之一,參議院於2017年曾提出「2017年物聯網網路安全促進法」(Internet of Things Cybersecurity Improvement Act of 2017)草案,防止美國政府部門購買有明顯網路安全性漏洞之聯網設備,並制定具體規範以保護聯網設施之網路安全,然而該法案最終並未交付委員會審議。

  2019年4月,美國參議員Mark Warner提出「2019年物聯網網路安全促進法」草案(Internet of Things Cybersecurity Improvement Act of 2019),再度嘗試建立物聯網網路安全監管框架。本法將授權主管機關建立物聯網設備所應具備之安全性條件清單,而該清單將由美國國家標準與技術研究院(National Institute of Standards and Technology)擬定,並由管理與預算局(Office of Management and Budget, OMB)負責督導後續各聯邦機關導入由美國國家標準與技術研究院所制定之網路安全指引。本法草案相較於2017年的版本而言雖較具彈性,惟網路安全專家指出,清單之擬定與執行管理分別交由不同單位主責,未來可能導致規範無法被有效執行,且聯邦各層級單位所需具備之資安防護等級不盡相同,如何制宜亦係未來焦點。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 美國參議院提出「2019年物聯網網路安全促進法」草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8234&no=57&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
日本內閣網路安全中心發布網路安全協議會營運報告

  日本內閣網路安全中心(内閣サイバーセキュリティセンター)依據於2018年底新修正之網路安全基本法(サイバーセキュリティ基本法,以下稱基本法),於今年1月30日發布網路安全協議會的營運報告(以下稱營運報告)。 基本法修法原因在於網路攻擊日趨複雜,若組織受到網路攻擊,並非每個組織都有能力因應,如此將導致組織運作受到衝擊。因此於基本法第17條新增設立「網路安全協議會」(サイバーセキュリティ協議会,以下稱協議會)。日本內閣網路安全中心於前揭發布之營運報告中說明協議會之運作模式及招募成員情形。   運作模式上,協議會設有秘書處、營運委員會及總會,秘書處由內閣網路安全中心擔任,營運委員會由各機關首長組成,總會則由所有協議會成員組成並且定期召開會議;協議會將成員分成第一類成員、第二類成員及一般成員。第一類成員與第二類成員組成特別工作小組(タスクフォース),小組成員間會交換不對外公開且尚未確認的機密資訊,一般成員則依循特別工作小組提供的資訊及因應對策,加以實際運用。經營運報告統計,自協議會成立(2019年4月1日)至同年年底,一共發生33起網路攻擊事件,皆透過協議會促使各政府機關、私人組織迅速掌握網路攻擊資訊。   招募成員方面,協議會於去年5月加入第一期91名成員;同年10月,再加入64名第二期成員,目前為止共計155名;第三期成員已於今年三月開放申請加入,預計五月確定第三期成員。此外,營運報告中列有協議會成員名簿,成員包含內閣官房首長、資訊處理推進機構(情報処理推進機構)、宮城縣網路安全協議會、NTT DOCOMO電信公司、成田國際機場公司、石油化學工業協會、富士通、三菱電機等產、官、公協會組織單位。日本藉由設立協議會,期許透過政府與民間協力合作,共同維護政府公部門及產業之基礎網路安全。

歐盟議會擬將電子香菸納入規範落實菸害防制

  歐盟議會今年(2013)10月8日,針對「菸草產品指令」修正草案(Revision of the Tobacco Products Directive)進行投票,擬將電子香菸納入藥用規範落實菸害防制。此次修正草案目的在於規範歐盟菸草產品內部市場運作,保障公眾健康,該修正草案要點歸納如下 (一)包裝與標示   嚴格規範菸草產品需標示有礙健康的訊息和警語,並以圖示與文字呈現。除涵蓋外包裝正面與背面的65%外,側邊應標記妨害健康之警示。 (二)成分與添加物   為預防青少年對菸品產生興趣,規定菸草產品的外部包裝與內容物部份,需讓消費者清楚瞭解,購買的菸草產品有危害健康之疑慮,尤其是禁止香甜或水果風味的菸品要求在包裝上印刷更多警示規範,例如:不得將菸草產品以糖果、化妝品等樣式包裝之;禁止添加巧克力、香草等添加物抑制菸草刺激氣味。 (三)菸草產品規範範圍   對未含菸草成份之菸草產品,研擬具體規範辦法,例如:電子香菸、草藥香菸,擴大菸草產品規範範圍。   菸草產品指令之修正案預計於明年(2014)通過,藉由該項修正案統一歐盟各會員國對菸害防制標準與共識基礎,以提高會員國對菸草使用的危機意識,增加對禁菸、戒菸政策落實之動力。

英國正式提出人類組織與胚胎法草案

  英國可算是對人類胚胎研究最積極的國家之一,目前其胚胎相關研究係根據「人類受精與胚胎學法」(Human Fertilisation and Embryology Act 1990,HF&E Act)及「人類受精與胚胎學規則」(Human Fertilisation and Embryology (Research Purposes) Regulations 2001,Research Purposes Regulations)之規定,並授權「人類受精與胚胎學管理局」(Human Fertilisation and Embryology Authority,HFEA)加以管理。   然面對胚胎研究日益多樣化,英國健康部於今(2007)年5月正式提出「人類組織與胚胎法草案」(Human Tissues and Embryos (Draft)Bill,以下簡稱草案),期能加強現有管理體系並促進相關技術之發展,而草案特別針對體外受精(in vitro fertilization)及胚胎研究之相關規定,作一徹底檢視及翻修。   進一步觀察,胚胎儲存、胚胎篩選、精卵捐贈及主管機關均屬草案規定範圍,另近來於英國國內討論熱烈的人類動物混合胚胎議題,亦於草案中有所規定,草案准許三種類型之人類動物混合胚胎得以被製造,分別是:將動物細胞注入至人類胚胎中、將動物DNA注入至人類胚胎中及將人類細胞核植入動物卵子中等。至於人類精卵與動物精卵之結合,則是被禁止之行為。   草案後續將送交國會專門委員會審查,但由於草案涉及極為爭議的人類動物混合胚胎議題,社會輿論的壓力及保守派議員會產生何種影響,值得持續關注。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP