美國參議院提出「2019年物聯網網路安全促進法」草案

  自2016年Mirai殭屍網路攻擊事件後,物聯網設備安全成為美國國會主要關注對象之一,參議院於2017年曾提出「2017年物聯網網路安全促進法」(Internet of Things Cybersecurity Improvement Act of 2017)草案,防止美國政府部門購買有明顯網路安全性漏洞之聯網設備,並制定具體規範以保護聯網設施之網路安全,然而該法案最終並未交付委員會審議。

  2019年4月,美國參議員Mark Warner提出「2019年物聯網網路安全促進法」草案(Internet of Things Cybersecurity Improvement Act of 2019),再度嘗試建立物聯網網路安全監管框架。本法將授權主管機關建立物聯網設備所應具備之安全性條件清單,而該清單將由美國國家標準與技術研究院(National Institute of Standards and Technology)擬定,並由管理與預算局(Office of Management and Budget, OMB)負責督導後續各聯邦機關導入由美國國家標準與技術研究院所制定之網路安全指引。本法草案相較於2017年的版本而言雖較具彈性,惟網路安全專家指出,清單之擬定與執行管理分別交由不同單位主責,未來可能導致規範無法被有效執行,且聯邦各層級單位所需具備之資安防護等級不盡相同,如何制宜亦係未來焦點。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 美國參議院提出「2019年物聯網網路安全促進法」草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8234&no=57&tp=1 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
美國聯邦通訊委員會修改廣播電視業者對於兒童關看電視的保護義務

  美國聯邦通訊委員會( The Federal Communications Commission /FCC )在 2006 年 9 月,修改並解釋 2004 年一項課與廣播電視業者對兒童觀看電視保護義務之指令。在 2004 年提出的指令中對廣播電視業者有許多規定,包括:電視業者被要求提供兒童適當比例基準之核心( core )教育及資訊節目,並於該類型節目中全程播放中標示 E/I 的符號;允許在節目中出現網站網址,但限制兒童節目中顯示非與節目相關以及有商業目的之網站網址;原兒童節目之插播限制規定;以及修改所謂商業內容定義等。   這次對該指令的再修改,則是希望透過確保提供適當比例的兒童教育資訊節目、將廣告及其他兒童節目之行為納入商業內容定義,以及顯示網站網址之新限制規定,讓邁向數位化世界下之公眾利益能獲得保障。特別是在同時確保不過份削減廣播電視業者以及有線電視業者節目時間編排彈性下,保護兒童免於在廣播電視以及有線電視節目中,接收過多商業訊息。

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

列管高科技人員,政府加強有效管理西進的措施已漸顯露

  隨著去年( 93 )「臺灣地區人民法人團體或其他機構擔任大陸地區法人團體或其他機構職務或為其成員許可管理辦法」的公佈,加上行政院十月已將「敏感科學技術保護法」列為立法院第 6 屆第 2 會期優先審議法案,若是完成立法程序後,將同步對敏感科學技術以及人才登陸進行嚴密管制。   這項管理措施雖在於避免大陸不正當的挖角行為、國家核心技術及人才外流等,但是截至目前為止,限制進出的高科技人才清單至今尚未公告;即便清單公告後,相信透過第三地進出等投機方式,政府在管理上應當會疲於奔命,增加執行困難。政府發展高科技經濟理應建立「吸引留下」的環境,而非以防堵心態限制人才登陸工作,如此只會加速人才的流失、國外人才或廠商來台工作或投資之意願降低,更遑論台灣永續發展的可能。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP