自2016年Mirai殭屍網路攻擊事件後,物聯網設備安全成為美國國會主要關注對象之一,參議院於2017年曾提出「2017年物聯網網路安全促進法」(Internet of Things Cybersecurity Improvement Act of 2017)草案,防止美國政府部門購買有明顯網路安全性漏洞之聯網設備,並制定具體規範以保護聯網設施之網路安全,然而該法案最終並未交付委員會審議。
2019年4月,美國參議員Mark Warner提出「2019年物聯網網路安全促進法」草案(Internet of Things Cybersecurity Improvement Act of 2019),再度嘗試建立物聯網網路安全監管框架。本法將授權主管機關建立物聯網設備所應具備之安全性條件清單,而該清單將由美國國家標準與技術研究院(National Institute of Standards and Technology)擬定,並由管理與預算局(Office of Management and Budget, OMB)負責督導後續各聯邦機關導入由美國國家標準與技術研究院所制定之網路安全指引。本法草案相較於2017年的版本而言雖較具彈性,惟網路安全專家指出,清單之擬定與執行管理分別交由不同單位主責,未來可能導致規範無法被有效執行,且聯邦各層級單位所需具備之資安防護等級不盡相同,如何制宜亦係未來焦點。
本文為「經濟部產業技術司科技專案成果」
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
必載規定修法動態與爭點必載規定修法動態與爭點 科技法律研究所 2012年4月9日 壹、修法動態 我國無線電視數位化後,頻道大幅增加,必載義務規定將影響有線電視系統的頻道安排與營運規劃,依照最新黨團協商結論,有線廣播電視法修草第33條第1至3項規定:「系統經營者應同時轉播依公共電視法設立之公共電視之節目及廣告,不得變更其形式及內容,並應列為基本頻道。但經中央主管機關許可者,不在此限。(第一項)系統經營者為前項轉播,不構成侵害著作權,免付費用,亦不得向訂戶收取任何費用。(第二項)系統經營者應同時轉播民營無線電視事業所指定之一個頻道節目及廣告,不得變更其形式及內容,並應列為基本頻道。但法律另有規定或經中央主管機關許可者,不在此限。(第三項)」同草案第36條第1項則規定:「系統經營者播送之頻道節目及廣告,應依著作權法或其他相關法規取得合法授權。」就上開兩條文做體系觀察,可得出有線電視雖對民營無線電視台所指定之一個頻道負必載義務,但在授權協商未完成前,可予以先行下架、拒絕轉播。但無線電視業者卻反對,主張「數位無線頻道全部必載、且無須付費」。 貳、論點研析與本文建議 一、應注意國際公約之遵守 我國必載規範最早見於1998年著作權法第56條之1第2項:「有線電視之系統經營者得提供基本頻道,同時轉播依法設立無線電視臺播送之著作,不得變更其內容。」使必載不須經著作財產權人同意,屬免費轉播,與伯恩公約第9條第2項及TRIPS第13條有關合理使用之規定不符,引起其他國家關切,而於2003年修正時刪除。惟同樣的規定仍然存續於有廣法中,相背國際公約問題未獲解決。無線電視頻道內所有節目,須向節目原始著作權利人取得授權。若規定有線電視業者須必載所有無線電視頻道,卻不構成著作權之侵害,將連帶使得無線電視業者無須向節目原始著作權利人取得於有線電視系統播送之授權,損及節目原始權利人之利益。 二、有線電視業者之頻道空間與「基本頻道空間」仍具有限性,立法不宜過度限制其權利,仍應以必載一個頻道為宜 從美國的法制經驗觀之,確保資訊多樣性、大眾免費收視之利益與促進市場競爭三項實質政府利益,並未因無線電視數位化而消失,數位必載仍有需要,只是全部必載可能構成多頻道平臺業者逾越必要程度的負擔。故系統業者僅須負擔必載無線電視業者自選群播中一個頻道串流的義務。我國目前有線電視系統未完全數位化,若全部必載民營無線電視共12個數位頻道,且列為頻道空間有限且訂閱戶最多的基本頻道,將導致有線電視業者獲利減損,恐過度限制有線電視業者的廣電與財產自由。我國無線電視已極趨弱勢,必載的確可確保無線電視業者的廣告收入,進而維持經營以保資訊多樣性,仍有必要繼續採行必載規則,惟必載頻道應僅由無線電視業者選擇其一可謂足夠。 三、我國民營無線電視台不屬非商業無線電視台,應輔導其回歸商業競爭,充實數位無線電視臺之動能 非商業無線電視台主要係補充商業電視因追求收視率與廣告收入,所造成特定資訊缺乏而設。商業無線電視台的全部必載恐對多頻道平臺業者投入於商業競爭上之努力,造成搭便車之效果,進而減損無線電視業者自身技術創新與節目開發之誘因。適切輔導無線電視業者競爭閱聽眾之眼球,如英國之共同傳輸的數位無線電視平臺,才能使無線電視業者更有效利用具高度公益性的無線頻譜。 四、無線電視業者間對必載規範與定位時有內部爭議,應仿照美國法制,設計可符合不同業者需求之「必載/再傳輸同意」選擇權框架 法研議修正之初,無線電視業者內部即有不同意見與需求,有意欲與有線電視業者進行載送之商業協商者,亦有傾向免付費必載者。若完整引進美國法制的精神,由無線電視業者自行選擇必載或行商業協商載送,不但可滿足當前不同無線電視業者間的歧異;亦因法制具有彈性,而有不因業者商業上成功與失敗之變化而須頻繁修法之利。
.PHARMACY頂級域名(gTLD)防止偽藥流竄仿冒藥品在網路通路的銷售流通向來十分猖獗,根據國家藥事管理全會(National Association of Boards of Pharmacy, NABP)統計,全球約有97%的藥品銷售網站販賣仿冒藥品。職業醫療服務機構(Occupational Medical Services, OMS)也指出,2010年全球的偽劣藥品約有750億美元的市場規模,而消費者於網路上買到的藥品約有50%都是仿冒藥品。全球每年約奪走七十萬人命的肺結核和瘧疾,其中約二十萬人的死亡主因並非疾病,而是服用了仿冒藥品。 為了阻止仿冒藥品在網路銷售通路的氾濫,NABP申請並通過審核,成為新創立的.PHARMACY頂級域名(gTLD)的註冊資料庫管理者(Registry Operator),負責.PHARMACY頂級域名的網域名稱資料管理。.PHARMACY頂級域名提供藉由網路銷售處方藥、處方藥相關產品、藥事服務或資訊的公司提出申請。公司提出域名申請時,會由NABP負責審核,以確保使用.PHARMACY頂級域名販售藥品的網站,都符合相關管制標準及當地法規,包含網站所設立的地點及藥品銷售或運送地點等。為執行.PHARMACY頂級域名計畫,NABP下設不同功能的常設或非常設組織,例如在.PHARMACY開放申請的國家,如法國、日本及德國等,設立國家標準制定委員會(National Standard Setting Committees),於該國家的公司提出.PHARMACY頂級域名申請時,為NABP提供該國藥事相關法規的協助,以利NABP審核頂級網域名稱的申請案件。 .PHARMACY頂級網域名稱於2014年11月開放申請。未來,世界各地的消費者在網路購買藥品時,只要認明有後綴.PHARMACY的網址,就不用擔心會購買到偽劣藥品了。