人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。
AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。
「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點:
一、 資料側寫之公平性與透明性(fairness and transparency in profiling);
二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性;
三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策;
四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險;
五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性;
六、 資料最少化與目的限制(data minimization and purpose limitation);
七、 資料當事人之權利行使(exercise of rights);
八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。
ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
日本日立公司歷經多年研發「指靜脈認證」技術,這個研創的掃描器「靜紋J200」,可掃描判讀個人右手中指的靜脈紋路。依據該技術研創召集人中村道治博士的說法,每個人手指血管紋路是獨一無二,可作為個人生物身分辨識,希望能夠藉此安全防偽技術,杜絕盜領等事件發生。 日本長崎的「十八銀行」率先在提款機試用「靜紋J200」中指靜脈認證技術,該辨識裝置乃是以紅外線掃描取得中指血管影像,和金融卡資料及銀行生物身分資料庫比對。而為防止歹徒截斷受害人手指企圖通過辨識盜用身分提款,日立公司特別加上額外的防偽技術,只有血管內有溫暖血液流動的手指才能通過認證,斷指無法過關。
歐盟網路中立性議題發展—2009~2013年兩次電子通訊管制法律改革之觀察 檢視《科學園區設置管理條例》暨相關規範對新創產業之租稅優惠檢視《科學園區設置管理條例》暨相關規範對新創產業之租稅優惠 資訊工業策進會科技法律研究所 蔡立亭 法律研究員 2019年12月23日 《科學園區設置管理條例》於1979年訂立,並於2018年5月15日全文修正,同年6月6日公布。規範名稱由原先之《科學「工業」園區設置管理條例》更訂為《科學園區設置管理條例》(以下簡稱本條例),由傳統製造業為主體的思維,轉化為引進多元科學技術。 為鼓勵多元科技產業進入園區,本條例設有租稅優惠之規定,若自國外進口機器、設備、材料等,則可免徵進口稅、貨物稅、營業稅;外銷產品或勞務時,不僅營業稅的稅率為零,亦免徵貨物稅。[1]另外,尚有承租土地租金之減免;[2]以及輸出入貨品,若申請簽證、核准,則可免辦輸出入許可證。[3]在子法上,亦有園區進出口貨品保稅之規範。[4]申言之,進入園區的事業,仍須有實體的物件產出,方能適用本條例中的優惠。此仍偏屬於以工業的思維,規範園區內的產業,針對無實體產出的業者,如以大數據分析、服務為導向的新創事業,則不適用目前相關的租稅優惠。 在其他規範,[5]亦有輔助產業發展之租稅優惠。立於推動產業創新的基礎,針對遵守環境保護、勞工、食品安全衛生規範的企業;[6]或投資之全新智慧機械係供自行使用;[7]或於其自行研發之智慧財產權取得之收益範圍內讓與、授權,[8]均得抵減課徵所得稅。另,學術或研究機構自行研發,[9]或員工取得獎酬股份的基礎給付,[10]亦均得選擇免課徵所得稅。創業投資事業,[11]亦享有相關之租稅優惠。並尚有為生技新藥產業的升級,而在人才培訓、研究、發展的投資,可抵減營利事業所得稅。[12]針對中小企業對土地之使用、研發實驗、以智慧財產作價的股票、保留盈餘、增僱員工,[13]亦設有租稅優惠。現行的稅務規範,已不再侷限於空間或實體物,而有以鼓勵「研發」為主體。換言之,新創產業研發的各個階段,仍須以各自的技術、資金、人力形成研發成果,若能以政府的資源協助產品開發的過程,應可強化新創產業既有的研發基礎。 提供新創產業稅務上的支持,不僅可以直接補助新創業者的方式,亦可藉由鼓勵新創業者接受輔導,加速達成科技發展的目標。此可觀察美國《紐約洲商業孵化器與新創熱點支持法案》,[14]受孵化器輔導的新創公司,在個人所得稅、銷售與使用稅務、公司特許經營權的稅務上,具有利益。另,中國大陸對於重點發展的產業和專案,亦設有減稅、免稅等規定,[15]以提升科技發展。稅務上的優惠,已不再限於研發,而擴大及於「整體研發的過程」。 綜上所論,台灣政府為推動新創產業的發展,提供稅務上的優惠,以提升研發成果市場競爭力。若為加速科學研究的效率,或可參考美國、中國大陸以孵化器協助新創公司達成研發目標,制訂稅務優惠規範與接受輔導的要件等。 [1] 本條例第23條。 [2] 本條例第24條。 [3] 本條例第25條。 [4] 科學園區保稅業務管理辦法。 [5] 如中小企業發展條例、產業創新條例、生技新藥產業發展條例。 [6] 產業創新條例第10條。 [7] 產業創新條例第10條之1。 [8] 產業創新條例第12條之1。 [9] 產業創新條例第12條之2。 [10] 產業創新條例第19條之1。 [11] 產業創新條例第23條之1、第23條之2、第23條之3。 [12] 生技新藥產業發展條例第5條、第6條、第7條。 [13] 中小企業發展條例第4章:第33條至第36條之3。 [14] New York State Department of Taxation and Finance Taxpayer Guidance Division, New York State Business Incubator and Innovation Hot Spot Support Act, Technical Memorandum TSB-M-14(1)C, (1)I, (2)S, at 1-6 (March 7, 2014), URL:http://www.wnyincubators.com/content/Innovation%20Hot%20Spot%20Technical%20Memorandum.pdf (last visited:December 18, 2019). [15] 《中華人民共和國企業所得稅法》第4章「稅收優惠」:第25條至第36條(2008年修正)。
日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。 本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。 報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。