人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。
AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。
「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點:
一、 資料側寫之公平性與透明性(fairness and transparency in profiling);
二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性;
三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策;
四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險;
五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性;
六、 資料最少化與目的限制(data minimization and purpose limitation);
七、 資料當事人之權利行使(exercise of rights);
八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。
ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
Spitzencluster-Wettbewerb由德國聯邦教育與科學部(Bundesministerium für Bildung und Forschung,BMBF)自2007年起開始推行,屬該國高科技戰略2020(hightech-strategie 2020)之政策配套措施之一,更是歐盟發展歐洲研發區位計畫(European Research Area)之一環。所謂聚落係建立在德國傳統工業區位分布上,利用群聚效應因應產業技術發展的複雜問題(產業問題非單一技術可解決),使各具專長之學研機構與企業共同分享產業問題研議出解決方案,分擔研發風險與成本等,增強合作效率,促進產業創新及升級。聚落多以成立協會(association)為主,平均每一聚落有近70個企業參與,原則上開放跨國參與者參與聚落之產學合作,並對會員收取會費。 本計畫作為重要的區域產學研合作計畫,乃承襲自德國過去不斷推動的區域產學研合作計畫,其特色是採取競爭方式選出德國境內優秀之聚落,並補助其相關研發計畫。自2007年至2015年間,已有三次選拔,並選出共15個領先聚落,分別涉及領域橫跨航太、資通訊、能源、生技等技術發展。至2015年為止總計已補助超過1300個計畫。2015-2017年將規劃有三次選拔,每回合挑選至多10個聚落獲得補助。目前本計畫已補助3.6億歐元預算,至2017年底將再投入5億歐元預算。
美國閒置頻譜發展近況為了讓業者間服務不受干擾,政府在規劃頻段時,皆會設置護衛帶(Guard Band),以維持服務品質。不過,隨著科技的進步,業者彼此干擾程度降低,頻譜的使用也較過去有效率,導致頻段常有閒置的情況。是故,FCC在2008年正式公告開放閒置頻譜(white space),透過業者無須取得執照,以增加頻譜的活用與增加民眾網路接取。美國在2009年完成無線電視數位化後,亦從700MHZ較低頻段留下成對5*5MHz,期望透過該頻段覆蓋率高特性,增加業者投資偏遠地區,使當地民眾享有網路帶來的便利性。 閒置頻譜的開放利用,雖可增加公益性與頻譜使用性,但亦存有干擾無線麥克風、行動電話與廣播服務等服務之虞。FCC為了兼顧各業者服務品質與頻譜有效運用,透過地理位址功能(geo-location capability),輔以成立數據資料庫的方式,藉由資訊透明減少頻譜開放後的互相干擾。今年FCC閒置頻譜的發展,3月允許全國可建置TV Band Devices,期以迅速活化頻譜利用;5月公告低功率的電台須登記資訊於數據資料庫,以避免服務受到干擾。6月,FCC宣佈Google通過測試,成為美國第三家數據資料庫業者,增加服務競爭性。部分輿論則是認為Google在擁有地圖與數據資料庫後,將會更致力在偏遠地區使用無需執照頻譜(Unlicensed Spectrum),此舉無疑是增加Google服務影響力。 政府具有規劃性開放的結果,已直接影響民間投入閒置頻譜的利用。目前,Google與微軟相繼於非經濟地區,建置「閒置頻譜」設備,期以將網路服務滲入美國各角落。西維吉尼亞大學(West Virginia University)宣佈將開發校園與周邊地區的閒置頻譜,已提供鄰近區域免費Wi-Fi服務。除此之外,亦有部分企業透過策略聯盟發展「圖書館Gigabit網路」計畫,期以透過無線電視頻段具備高涵蓋與穿透力之特性,使圖書館與附近地區皆可享受免費無線網路。該聯盟已於五月宣布選擇堪薩斯城(Kansas City)公共圖書館為試點區, 且持續公開徵求自願參與之圖書館。 綜上所敘,在業者服務彼此不受干擾為前提下,閒置頻譜的開放確實可活化使用效率與增加網路接取性。並且,輔以無線電視空白頻段之優勢,可以預見未來Wi-fi無論是網速亦或是穩定度,其品質將更為提升,使無所不在網路落實於社會每個角落。
網路拍賣之法制趨勢 日本發布成為可信賴夥伴的資料治理手冊,呼籲企業應建立並實施貫穿資料生命週期的資料治理機制日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)