人工智慧專利加速審查計畫

  人工智慧專利加速審查計畫(Accelerated Initiative for Artificial Intelligence,又稱AI2)是新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)於2019年4月宣布之計畫,目的在於加快與人工智慧相關的專利申請程序。該計畫自2019年4月26日開始實施兩年,每年有50位名額。專利申請權人申請適用該計畫並申請專利者,最快可在6個月內審核通過並授證。

  適用AI2計畫之技術主體需與AI發明領域密切有關,該申請案之AI功能包含自然語言學習(Natural Language Processing)、影像辨識、聲音辨識、自動化系統(Autonomous Systems)、機器人、預測分析(Predictive Analytics)等;並須應用在生命科學、醫學、農業、資通訊、交通等領域。

  AI2與新加坡智財局2018年實施的「金融科技專利優速計畫」(FinTech Fast Track Initiative, FTFT)類似,FTFT旨在加速金融科技領域之專利申請及審查時效。除了技術主體不同,兩者在申請和審查程序上大致類似:不需支付額外的申請與審查費用、該項專利之首件申請案需於新加坡智財局提出、專利請求項(claims)最多為20項、該項專利之「請求專利核准」與「請求專利檢索審查」文件需於同一日提交、專利申請權人收到實質審查意見書需兩個月內回覆等。

  人工智慧是新加坡轉型為數位經濟國家的關鍵,隨著全球AI專利申請活躍,新加坡智財局支持將AI產品更快地推向市場,並期望有利新加坡爭取更多新創企業及投資。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 人工智慧專利加速審查計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8271&no=57&tp=5 (最後瀏覽日:2026/01/01)
引註此篇文章
你可能還會想看
演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

促進公有文化創意資產的加值利用-以文化創意產業發展法規定為例

TOP