歐盟公布智慧運輸系統指令授權規則

  歐盟執委會於2019年3月13日針對清潔,聯網和自動化移動戰略,公布智慧運輸系統指令授權規則(Commission Delegated Regulation of 13.3.2019 supplementing Directive 2010/40/EU of the European Parliament and of the Council with regard to the deployment and operational use of cooperative intelligent transport systems),該授權規則(Delegated Regulation)係歐盟執委會為執行智慧運輸系統指令(ITS Directive)所制訂之相關細則,其目的使執委會與會員國合作提出指導分針,進一步讓各國能夠對自動及聯網化駕駛車輛進行型式認可,以加速相關創新運輸技術於歐洲協同式智慧運輸系統(C-ITS)之發展。其創新技術包含使車輛間可相互「交談」,或與道路基礎設施以及其他道路使用者「交談」,可應用在例如危險情況,道路施工和掌控交通號誌時間,將使公路運輸更安全,更清潔,更高效率。授權規則將符合容克委員會(Juncker Commission),即現任歐盟執委會主席容克領導的執政團隊,其所提出的清潔移動提案( Proposals on clean mobility),是歐盟移動現代化的另一步驟,也為本世紀下半葉的氣候中和(climate neutral)目標,即達到溫室氣體排放總量為零之目標作準備,並持續達到歐盟2050年交通事故近零死亡或零嚴重傷害的目標。

  歐盟移動及運輸專員Violeta Bulc表示:「此決定將為車輛製造商,道路營運者和其他人提供一個法源依據,以便於歐洲開始大規模發展C-ITS服務,同時對新技術和市場發展持開放態度。此將極力促進我們實現我們對道路安全的願景,並作為實現聯網化和自動化移動性的重要基礎。」

  車輛,交通號誌和高速公路在裝配合規之聯網技術裝置後,可向周圍的所有交通使用者發送標準化之訊息,此將是實現車間通訊的重要里程碑。該授權規則將確保不同系統間擁有協同工作能力,使所有配備該技術的站點能在開放網路中安全地與任何其他站點交換資訊,並讓系統可順利運行,透過車輛間以及車輛和交通基礎設施之間的連接,也能幫助駕駛員做出正確的決策並視交通狀況來改善道路安全性、交通效率及舒適性。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟公布智慧運輸系統指令授權規則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8276&no=57&tp=5 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險

日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

何謂「CRADAs」?

  CRADAs係研發合作契約(Cooperative Research and Development Agreements)之縮寫,為美國國家衛生研究院(National Institute of Health,NIH)與業界和學術界進行科學技術研究發展產學研合作時所簽訂之契約。基於美國國家衛生研究院投入相關領域技術發展之機關設置目的,其所屬之科學家們可以利用本身的科研資源,與業界或學術界共同合作促進保健藥品和原型(prototype)開發與產品進一步的商業化量產。此外,業界也可利用本身私部門的研發力量,介接在國家層級最先進的技術研究合作。   研發合作契約的目的是專為使政府設施、政府補助研發成果之智慧財產權,透過與私部門之產學研合作提供合作互動,以促進科學技術知識之發展轉化為具有市場價值之商業化用途。配合契約之簽署,針對研發合作之權利義務,美國國家衛生研究院另設置有科技發展合作中心(Technology Development Coordinator,TDC),作為研發合作早期階段進行磋商與諮詢之專業機構,以幫助瞭解和研擬適當內容的研發合作契約,並順利依法獲得相關主管機關之核准。

OECD發布《支持綠色創業的政策:在丹麥建立綠色創業中心》報告

  經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)於2022年6月13日發布《支持綠色創業的政策:在丹麥建立綠色創業中心》(Policies to Support Green Entrepreneurship: Building a Hub for Green Entrepreneurship in Denmark)報告,以協助丹麥落實強化綠色創業生態系之倡議。   「綠色創業」一詞雖常見於學術文獻及政策文件,卻無明確統一之定義。本報告所採之定義為:「由新創公司發展及採用綠色產品、服務及製程。」所謂綠色,係指以「減少或防止任何形式的環境破壞、減少汙染物及廢棄物排放,或具有同等品質與效益但卻更節約資源」的方式為之。本報告評估丹麥的綠色創業狀況及政策建議,摘要如下: (一)丹麥綠色創業生態系現況 1.丹麥在綠色創業上是成熟的全球參與者,惟尚非全球樞紐。依2022年Startup Genome全球創新生態系報告,歐洲有12個潔淨技術(Cleantech)的新創生態系排名高於哥本哈根。 2.丹麥在環境技術領域之新創公司就業人口高於一般新創公司平均就業人口,但其規模擴大率則低於一般公司平均規模擴大率,顯示丹麥的綠色新創企業在擴大營運規模上遭遇困難。 3.相較於英國及瑞典等歐洲國家,丹麥的創投市場規模較小。融資管道的不足,可能成為影響丹麥綠色創業成長的原因之一。 (二)丹麥綠色創業政策藍圖 1.透過一系列融資工具提供綠色創業財務支持,如丹麥綠色投資基金(Danish Green Investment Fund)、丹麥成長基金(Danish Growth Fund)、丹麥創新基金(Innovation Fund Denmark)等。 2.國家級的丹麥能源創育聚落(Energy Cluster Denmark)與民間創新中心CLEAN共同橋接丹麥研發機構與企業進行合作。 3.更多且更廣泛之企業支援措施,如六個區域商業中心、Virksomhedsguiden入口網站、育成中心及加速器網路(如Beyond Beta)等。 (三)丹麥核心政策建議 1.發展整合公私部門之綠色創業策略,並追蹤綠色創業相關案例,作為未來制定政策之依據。 2.發展綠色創業的一站式平台,提升可供利用服務的能見度。此類服務可進一步引導綠色創業,包括明確區分開發新的或實施現有的綠色解決方案,以展現對綠色創業的支持。 3.加強對專業育成中心及加速器等既有政策的支援。

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議 資訊工業策進會科技法律研究所 2023年05月31日 過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1] 研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2] 在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3] 因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4] 營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5] 在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6] 與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7] 因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8] 惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9] 總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10] 而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023). [2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023). [3]Id. [4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023) [5]Id. [6]John Quinn, supra note 2. [7]Id. [8]Collins-Chase et al., supra note 4. [9]John Quinn, supra note 2. [10]Havranek et al., supra note 1. [11]Collins-Chase et al., supra note 4.

TOP