美國《雲端法》(CLOUD Act)

  美國《雲端法》(CLOUD Act),全名為《釐清境外合法利用資料法》(Clarifying Lawful Overseas Use of Data Act),於2018年3月23日頒布生效,該法更新《1986年儲存通訊紀錄法》(Stored Communications Act of 1986),並釐清海外資料合法取得:無論資料儲存地在美國境內或境外,美國執法機構均可合法請求通訊紀錄的保存或揭露。

  《雲端法》有兩大重點:首先,《雲端法》授權美國與其他值得信賴的國家進行雙邊協議,以取得重大犯罪之電子證據。其他國家必須擁有相應的完善法規、隱私、公民權利之保護,方具備與美國簽署雙邊協議的資格。透過雙邊協議,締約雙方可憑對方國家的搜索票等法律文件,直接對通訊服務提供者強制執行。其二,《雲端法》闡明美國與相當多國家長久以來的原則─假設一間公司在特定國家的司法管轄權範圍內,則其所產生的資料應接受該國的管制,資料儲存地為何,在所不問。

  《雲端法》的立法背景可以追溯到2013年美國聯邦調查局(Federal Bureau of Investigation, FBI)進行緝毒受阻。當時,涉案美國公民的電子郵件存於微軟境外伺服器,FBI持有搜索令,但是微軟以《1986年儲存通訊紀錄法》管轄範圍不及於美國境外為由,拒絕提供系爭電子郵件。2016年聯邦第二巡迴上訴法院於Microsoft Corp. v. United States判決微軟勝訴─美國政府不得強制取得境外伺服器資料。然而,此訴訟存在相當多爭議,復有2018年《雲端法》之制定,微軟亦對《雲端法》表示支持。《雲端法》通過時,最高法院尚未做出判決;最終,最高法院於2018年4月17日撤銷Microsoft Corp. v. United States。2019年4月10日,美國司法部發布雲端法白皮書,匯集刑事和國家安全專業的律師之意見,並回答常見的問題,希望提升全球的公共安全、隱私及法治。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國《雲端法》(CLOUD Act), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8291&no=55&tp=5 (最後瀏覽日:2026/01/09)
引註此篇文章
你可能還會想看
美國參議院通過幹細胞研究加強法案,惟仍難逃被布希總統否決之命運

  美國參議院近日就是否開放聯邦經費挹注於胚胎幹細胞研究進行激辯,並於 17 日通過幹細胞研究加強法( Stem Cell Research Enhancement Act of 2005, HR 810) 及其他兩項亦涉及胚胎幹細胞研究的類似法案。其中最引人注目者為 HR 810 ,該法案允許以聯邦經費資助使用人工授精之剩餘胚或病患自願捐贈之胚胎,進行幹細胞研究。這些法案的通過顯示,美國參議院打算挑戰布希政府自 2001 年所立下禁止聯邦經費挹注於胚胎幹細胞研究的禁令。   其實早在去年五月,眾議院即以 238 票贊成、 194 票反對通過 HR 810 ,布希政府在眾議院通過 HR 810 後,隨即表示一旦本法在國會立法通過,將會動用否決權推翻此一法案。根據美國法律,法案唯有經參眾議院以三分之二以上多數通過,總統始不能否決之。日前參議院係以 63 票贊成、 37 票反對通過 HR 810 ,並未達三分之二多數通過,因此本法案未來恐難逃被布希總統否決的命運。白宮發言人業已表示,該法案強迫所有的美國納稅義務人出錢資助以故意破壞人類胚胎為基礎的研究行為,法案一旦送交總統,布希總統將會行使否決權,這將會是布希總統任內首度針對國會所通過的法案動用表決權。   儘管布希總統仍持一貫反對胚胎幹細胞研究的立場,不過,美國民眾卻有支持胚胎幹細胞研究的趨勢。一項最新民調顯示,每四名受訪者中,就有三名贊成將聯邦經費用於資助胚胎幹細胞的研究。隨著美國國會大選將於十一月中旬展開,預料胚胎幹細胞研究議題將會再度成為焦點。

法國高等教育暨研究部宣布額外投資新創企業培育計畫,強化產業競爭力與發展深度技術

為強化產業競爭力與發展深度技術,法國高等教育暨研究部(Ministère de l'enseignement supérieur et de la recherche)於2023年1月9日宣布將額外投資5億歐元,以培育更多的研究型新創企業。 基於2021年10月12日法國總統宣布的《法國2030投資計畫》(France 2030),法國政府將於五年內投入540億歐元於新創相關事務,且目前已於2022年達到成立25間獨角獸公司的中期目標。為進一步提高學研機構以研發成果衍生新創之數量,讓新創公司數量成長2倍,法國高等教育暨研究部部長Sylvie Retacleau與法國產業部(Ministre chargé de l'Industrie)部長Roland Lescure提出以下三大行動,並額外投資5億歐元執行: (1)建立25個大學創新中心(Pôles Universitaires d'Innovation, PUI):法國政府將投入1.6億歐元,在大學網站上提供創新戰略、單一治理及敏捷方法,藉此激發研發團隊潛力及創意。PUI將在不額外增設法律規範之情況下,與現有政策結合推動上述措施。 (2)透過既有措施推動深度科技:透過i-Lab、法國科技新興獎學金、深度技術發展援助計畫等現有措施,以及增設法國科技實驗室獎學金,加速深度技術發展計畫。此外,未來也將提供6500萬歐元的補助。 (3)加強推廣研究工作及專題研究計畫(Programmes et équipements prioritaires de recherché, PEPR)成果:未來法國政府將投入2.75億歐元,挑選17項研究成果,建立評估研發成果之檢測及支援能力,並依領域性質,研究各領域專利證書、標準化和相關法規。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

歐盟檢視「2005-2009年歐洲奈米科學與技術行動計畫」之執行成效

  歐盟執委會(European Commission)於今年9月初公佈了「『2005-2009年歐洲奈米科學與技術行動計畫』(Nanosciences and Nanotechnologies: An action plan for Europe 2005-2009)之期中執行報告」,文中總結了於2005至2007年有關該計劃重點領域執行之相關的活動及進程。   在該報告中,歐盟執委會也在報告中指出歐洲在奈米科學與技術發展上的一些弱點,包括:主要跨領域基礎設施的缺乏、私資金在奈米科技產業研發創新上的短缺(儘管「歐洲技術平台」積極鼓勵私人參與奈米科學與技術的投資,但目前私資金仍只佔全部資金之55%)、以及隨著歐盟會員國投資的增加,重複研究及分裂研究的風險也隨之增加。此外,奈米科技跨領域及創新的本質對於既有之研究、教育、專利授予及規範等方法也形成不少的挑戰。   另一方面,報告也指出歐洲在一些重點區域研究的整合相當成功;例如,在中小企業參與第六期研發綱領計畫(FP6) 中之奈米科學與技術計畫的部份,即由2003-2004年的18%成長至2006年的37%。此外,歐盟執委會也有計劃地來支持技術商業化的發展,像是競爭及創新計畫(Competitiveness and Innovation Programme)、財務風險分攤機制(Risk Sharing Financial Facility)、以及接收利用奈米技術為基礎之控制管路(pilot lines);未來,歐盟執委會計畫對負責任奈米科學與技術之研究採取自願性的行為規範。   下一份奈米科學與技術行動計畫之執行報告預計在2009年底公佈。

TOP