美國白宮(the White House)於2019年5月2日發布第13870號總統令(Executive Order),旨在說明美國的資安人力政策規劃。
於聯邦層級的資安人力提升(Strengthening the Federal Cybersecurity Workforce)上,由國土安全部(Department of Homeland Security, DHS)部長、管理預算局(Office of Management and Budget, OMB)局長及人事管理局(Office of Personnel Management, OPM)局長共同推動網路安全專職人員輪調工作計畫(cybersecurity rotational assignment program),計畫目標包含:輪調國土安全部與其他機關IT及資安人員、提供培訓課程提升計畫參與者之技能、建立同儕師徒制(peer mentoring)加強人力整合,以及將NIST於2017年提出之國家網路安全教育倡議(National Initiative for Cybersecurity Education, NICE)和網路安全人力框架(Cybersecurity Workforce Framework, NICE Framework,以下合稱NICE框架),作為參與者的最低資安技能要求。同時上述部長及局長,須向總統提交報告說明達成上述目標之執行方案。
於國家層級的資安人力提升(Strengthening the Nation’s Cybersecurity Workforce)上,則表示商務部部長(Secretary of Commerce)、勞工部部長(Secretary of Labor)、教育部部長(Secretary of Education)、國土安全部部長與其他相關機關首長,應鼓勵州、領土、地方、部落、學術界、非營利與私部門實體於合法之情況下,自願於教育、訓練和人力發展中納入NICE框架。此外,將每年頒發總統網路安全教育獎(Presidential Cybersecurity Education Award),給予致力於傳授資安知識之中小學教育工作者。
綜上所述,美國將透過制度、教育與獎勵等方式培育資安人才,提升國內資安人才的質與量,以因應越來越險峻的資安威脅與風險。
英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年6月13日發布有關資料道德與創新中心(Centre for Data Ethics and Innovation)之公眾諮詢,本次諮詢將於2018年9月5日截止。 在資料使用與人工智慧皆快速發展且對生活模式產生重大改變之背景下,英國政府認為企業、公民以及公部門對於資料及人工智慧的安全及道德創新都需要有明確規範以資遵循,以因應該領域快速發展而生的問題。為此,英國政府欲新建一個資料倫理與創新中心,該中心本身並不會對於資料及人工智慧的使用作出規範,主要係通過吸收各界的經驗及見解,統整這些經驗或見解並轉化為對政府現行監管方面缺陷之建議,該中心具有獨立諮詢之地位(independent advisory status),提供政府對資料及人工智慧相關議題之治理建議。 諮詢文件內指出中心作用及目標旨在提供政府政策指導,並與監管機構、研究機構、公民社會密切合作,以制定正確的政策措施;對於中心的活動及產出,政府認為中心可進行對於資料及人工智慧的分析及預測,並擬定最佳實務作法(如開發有效及合乎道德的資料及AI使用框架),進而向政府提供有助資料及人工智慧之安全及道德創新發展的相關建議。 本次公眾諮詢主要針對資料道德與創新中心之營運方式及重點工作領域徵詢意見,所提出問題大致上包括是否同意中心目前的職責及目標?中心該如何與其他機構進行合作?中心應採取哪些行動?是否同意目前建議的行動類型?中心需要哪些法定權力?中心如何向政府提交建議?是否應將中心提交之建議向大眾公開? 我國行政院於今(2018)年1月18日提出為期4年之「台灣AI行動計畫(2018-2021)」,計畫內容之五大重點為:(1)AI領航推動;(2)AI人才衝刺;(3)建構國際AI創新樞紐;(4)創新法規、實證場域與資料開放;(5)產業AI化,其中,第4點細部內容提及將建立高資安防護及親善介面之資料開放與介接平台,顯見我國政府正全力推動AI發展,亦對資料開放相關議題頗為重視。是以,英國資料道德與創新中心之發展在未來我國推動AI普及與產業AI化之進程上,似可提供我國參考方向,以健全AI發展之法制環境。
「何謂行動健康?」行動健康是指利用行動應用程式與智慧手機、平板、或無線裝置等行動裝置結合,運用這些裝置的核心功能,如聲音、簡訊、定位系統、藍芽、或3G、4G行動通信技術等,作為健康照護用途,以提升傳統照護品質與管理健康,減少醫療成本耗費。倘若行動應用程式具有醫療用途,可用於診斷、治療、預防疾病等,則屬於醫療器材,且該應用程式通常為醫療器材之附件,或與行動裝置結合使用而成為醫療器材,對此則稱之為行動醫療。 隨著智慧聯網(IoT)的應用,國際間對於行動健康與醫療的發展日益著重,除了鼓勵創新研發之外,也紛紛制訂法規政策因應,包括美國食品藥物管理局(FDA)在2013年9月公布行動醫療應用程式指導原則(Mobile Medical Application, Guidance For Industry and Food and Drug Administration Staff),並於2015年2月修訂;歐盟2012年提出eHealth 行動計畫(eHealth Action Plan 2012-2020),並在2014年4月針對行動健康的管理規範議題開放各類相關人士進行公共諮詢,後續在2015年1月公布諮詢結果。我國亦在2015年4月公布醫用軟體分類參考指引,以提供產業開發產品、申請查驗登記之參考。 未來,行動健康與醫療的發展將持面臨挑戰,相關問題包括行動健康與行動醫療之區分標準、行動醫療應用程式與傳統醫療軟體之監管差異、行動健康應用程式開發使用之自律性規範、使用者或病人隱私與個人資料保護、以及在研發過程中涉及的研究倫理等議題。
2016年生物支付技術將可能取代傳統支付型態根據美國公共電視台在2016年1月6日的新聞,指出生物支付將可能成為新興支付工具。生物支付之定義為利用生物辨識(biometric)技術驗證個人生物特徵,諸如:指紋、虹膜等進行支付。採用生物支付技術,未來將無須使用信用卡或行動裝置,僅需要個人生物特徵之辨識即可完成交易。此轉變將使未來交易更加快速、便利,但同時,生物支付的安全性卻也不無疑義。 即便生物辨識屬於高層級的資訊安全保護機制,但水能載舟,亦能覆舟。生物辨識利用生物不可變之特性進行身分識別,涉及高度個人隱私,為妥善保護個人資訊安全,需訂立生物辨識相關規範加以管制,否則將衍生許多法律問題。 例如:在2015年6月,美國線上出版商Shutterfly公司被控訴違法蒐集個人資料。原告稱其並非Shutterfly公司之註冊使用者,也從未同意其生物辨識資訊被該公司蒐集,但其面紋(Face print)卻被上傳至該公司網站,並標註姓名,儲存在自動針對相片標記臉部辨識系統之資料庫。 依據BIPA針對生物辨識定義及蒐集規範: 1.第10條: 生物辨識之態樣,包含視網膜、虹膜掃描、指紋或是手部、臉部外觀之掃描,但不包括簽名、照片、用於科學檢測之人體樣本、頭髮顏色等。 2.第15條(a): 規定公司蒐集個人生物特徵資訊應有相關規範供公眾查閱,並應提供生物辨識資訊之保管及銷毀日期及相關資訊。 3.第15條(b)(1): 蒐集生物辨識資訊應告知當事人。 Shutterfly公司提出要求法院不受理之抗辯,主張BIPA規定之臉部外觀,其文意解釋應為物理上個人親自接受掃描所得之資訊,並非原告所主張以照片辨識之臉部外觀,但法院認為Shutterfly之主張並不合理,因此同意受理此案。 觀察該案可發現,儘管生物辨識提高資訊安全之保護,但相關法規範解釋仍待實務完備。另一方面,生物特徵資訊極易被他人蒐集,因此,如何建置蒐集個人辨識資訊及完善相關措施,也是推行生物支付措施所需突破的關口。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。