新加坡個資保護法責任指南

  新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)的基本原則之一在於可歸責性(Accountability)之建立,原因在於個資保護的責任歸屬,是組織對個資的持有與控制所為的承諾與責任表示。因此,PDPA第11、12條之法遵責任,組織必須對所持有或控制的個資負責,並且需制定並實施資料保護政策、溝通並告知員工相關政策、及履行PDPA義務所必須施行之流程與作法。於組織責任而言,PDPA雖有強制性義務責任,但應忖量組織內部責任歸屬的措施,而非僅將責任落於遵守法律的程度,組織必須從合於法規的方法轉為基於責任歸屬的方法來管理個人資料。

  從而,該指南在政策、人員、流程等領域中透過資料生命週期的循環,確立組織責任歸屬。從落實良好的責任制始於組織領導力的概念出發,設定組織管理高層之職責與調性,繼而規劃處理個資及管理資料風險的方法。並由組織人員治理面向,確立溝通資訊與員工培訓知識與資源。除此之外,也在特定流程設置上,紀錄個人資料流動,了解如何收集、儲存、使用、揭露、歸檔或處理個人資料為流程的首要任務,繼而確認資料保護層面主要的差距與需要改進的領域。再將資料保護實踐於業務流程、系統、商品或服務。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 新加坡個資保護法責任指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8319&no=16&tp=5 (最後瀏覽日:2025/07/07)
引註此篇文章
你可能還會想看
FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

創投業景氣欠佳,政府扮演助力角色

  在網路泡沫化之後,曾經在九○年代紅極一時的資金投資機構 -- 創業投資 (Venture Capital) 也歷經了前所未有的低潮。創業意願的低落、股市的低迷,使得創投在投資目標的選擇與投資的回收上,都面臨很大的瓶頸。   然而近期以來,在美國,一股對創投支撐的力道,正逐漸成形。這股力量正是來自於各州的政府。目前在美國,除了六個州之外,各州的政府均積極投入創投產業,希望透過創投的中介功能,發展產業。各州政府經由創投發展的產業,主要有生技、醫療設備、軟體、電信、能源、半導體與網路等。   各州政府希望透過創投,發展當地的產業,並提供就業機會。在這波的潮流之下,四十四個州所支持的 151 支創投基金,已為創投業者帶來一股新的希望。

新德國包裝法簡介

  為有效降低包裝廢棄物對環境造成的汙染及不利影響,使製造商履行其B2C(business to customer)產品責任,德國以新的包裝法(Packaging Act, VerpackG)取代現行的規範(Packaging Ordinance,VerpackV),並已於2019年1月1日生效。   新包裝法VerpackG不同於VerpackV之處,在於除要求業者須加入原有的回收系統外,另授權Zentrale Stelle(Stiftung Zentrale Stelle Verpackungsregister,ZSVR)基金會作為新包裝法強制登記制度的執行單位,規範欲在德國銷售產品包裝之所有實體或網路製造商及零售商,有義務於ZSVR的數據資料庫”LUCID”註冊,才能在德國地區進行銷售,並且為全面提升透明度,乃規範於LUCID註冊之商家資訊皆屬可供大眾公開查詢。   依VerpackG規定,於2019年1月1日起未為註冊的商家,其包裝商品不能在德國上市,否則恐將臨100,000歐元之罰款;另未加入回收系統之商家,恐面臨200,000歐元之罰款。而除須註冊與回收系統的加入外,製造商及零售商尚須將以下之包裝相關資訊提供給ZSVR做比對: (一)註冊號碼(商家於資料庫註冊時,由ZSVR所提供之註冊號碼) (二)包裝材料及容積 (三)製造商履行生產者延伸責任(Extended Producer Responsibility)簽訂的包裝方案名稱 (四)與回收公司或回收系統間簽訂之契約期限 資料來源:自行繪製 圖 德國包裝法實施步驟

TOP