美國紐約州通過「防止非法侵入與加強電子資料安全法案」

  2019年7月25日,紐約州州長Andrew Cuomo簽署「防止非法侵入與加強電子資料安全法案」(S.5575B/A.5635/Stop Hacks and Improve Electronic Data Security Act, 又稱SHIELD Act),目的在讓處理消費者個人資料的企業承擔更嚴格的責任。其核心精神在於,一旦發生與資料外洩相關的安全漏洞時,能及時進行適當的通知。同時,修改紐約州現有的資料外洩通知法,擴大個資蒐集適用範圍、個資定義 (例生物特徵、電郵資訊等)及資料洩漏定義、更新企業或組織之通知程序、建立合於企業規模之資料安全要求。此外,如違反通知義務,將處以最高5千美元或每次(未履行通知義務)20美元 (上限25萬美元)的民事賠償。且美國司法部長(The Attorney General) 亦得以紐約人民名義,代為起訴未實施資料安全規畫的企業,並按紐約民事執行法與規則(The Civil Practice Law And Rules)第63條進行初步救濟,依法強制禁止侵害行為繼續發生。該法預計將於2020年3月1日生效。

  當天州長亦簽署「身份盜用預防措施和緩解服務修正案」(A.2374/S.3582),新增資料外洩安全保護措施,要求消費者信用機構,提供受安全漏洞影響的消費者「身份盜用預防措施」(Identity Theft Prevention )與「緩解服務」(Mitigation Services),為消費者制定長期最低度的保護手段。其要求信用機構,通知消費者將有關社會安全號碼的資料洩漏事件進行信用凍結,並提供消費者無償凍結其信用的權利。該法預計將於2019年10月23日生效,並且溯及既往適用該法案生效之日前三年內所發生之任何違反消費者信用安全的行為。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國紐約州通過「防止非法侵入與加強電子資料安全法案」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8321&no=55&tp=5 (最後瀏覽日:2026/01/19)
引註此篇文章
你可能還會想看
澳洲政府發布「急診醫師使用我的健康紀錄指引」提供急診醫師規範遵循

  2019年2月澳洲政府依據「我的健康紀錄法」(My Health Records Act 2012),執行全國國民納入「我的健康紀錄系統」(My Health Record System)(下稱系統)之政策,有將近9成的國民被納入系統,為解決急診醫師在緊急救治時,需查看病患醫療資訊的需求;澳洲數位健康局(Australian Digital Health Agency, ADHA)於2019年11月發布了一項全國倡議的政策:急診醫師能使用我的健康紀錄系統,在急迫情形下即時做診斷。因此澳洲健康安全與品質委員會(Australian Commission on Safety and Quality in Health Care)與澳洲急診醫學院(Australasian College for Emergency Medicine, ACEM)共同訂定「急診醫師使用我的健康紀錄之指引」(Emergency Department Clinicians’ Guide to My Health Record)(下稱指引)提供急診科醫師參考,說明如下:   原則上只有病患之家庭醫師或主治醫師才能進入系統查看病患的醫療資訊,其他未經同意的醫師不得隨意查看病患的醫療資訊,但若病患發生急救狀況時,則允許急診醫師得使用系統查看病患之醫療資訊,例如:使用藥物資訊、各醫師之醫療診斷書、照顧資訊、處方簽紀錄,病患用藥歷史、住院紀錄、家族病史、專家建議信(Specialist letters)、器官捐贈與預立醫療決定(Advance care plans)、病理診斷、病人自行輸入的資訊,例如過敏反應等,協助急診醫師能使用病患就醫紀錄迅速的做診斷;允許急診醫師得直接查看病患之醫療資訊,也解決急診醫師在救治時,無法即時與病患之家庭醫師聯繫問題。另外,系統之病歷電子化也為急診醫師帶來益處,例如:醫療資訊的合併,整合病患的就醫資料、減少不必要及重複的檢查,即時傳遞醫療資料等。此外,為了保障國民之資訊自主,醫師必須尊重病患的權利,例如病患得使用取消功能來刪除病歷資訊、限制特定醫療人員或醫療機構查看、限制查看資料的類型等。   這項指引使急診醫師能更了解如何使用系統、在緊急救護時,得隨時能查病歷資料做出最佳的處置、系統化的便利性為急診醫師節省許多處理時間,並促進與提升醫療品質。

日本成立供應鏈資通安全聯盟(Supply Chain Cybersecurity Consortium)

  日本經濟產業省(下稱經產省)於2020年6月12日發布其國內產業資通安全現況與將來對策(昨今の産業を巡るサイバーセキュリティに係る状況の認識と、今後の取組の方向性)報告,指出近期針對供應鏈資通安全弱點企業所展開的攻擊,有顯著增長趨勢。為此,該報告建議共組供應鏈的企業間,應密切共享資訊;於關鍵技術之相關資訊有外洩之虞時,應向經產省提出報告;若會對多數利害關係人產生影響,並應公開該報告。遵循該報告之建議要旨,同年11月1日在各產業主要的工商團體引領下,設立了「供應鏈資通安全聯盟(原文為サプライチェーン・サイバーセキュリティ・コンソーシアム,簡稱SC3)」,以獨立行政法人資訊處理推進機構(独立行政法人情報処理推進機構,IPA)為主管機關。其目的在於擬定與推動供應鏈資通安全之整體性策略,而經產省則以觀察員(オブザーバー)的身分加入,除支援產業界合作,亦藉此強化政府與業界就供應鏈資通安全議題之對話。   只要贊同上述經產省政策方向與聯盟方針,任何法人或個人均得參加SC3。針對產業供應鏈遭遇資安攻擊的問題,經產省與IPA已有建構「資通安全協助隊(サイバーセキュリティお助け隊)」服務制度(以下稱協助隊服務),邀集具相關專長之企業,在其他企業遭遇供應鏈資安攻擊時,協助進行事故應變處理、或擔任事故發生時之諮詢窗口。而SC3則規畫為這些參與提供協助隊服務的企業建立審查認證制度。其具體任務包含擬定認證制度的審查基準草案、以及審查機關基準草案,提供IPA來建構上述基準。依該制度取得認證的企業,將獲授權使用「資通安全協助隊」的商標。同時在業界推廣協助隊服務制度,讓取得認證的中小企業得以之為拓展其業務的優勢與宣傳材料。

德國聯邦政府公布2016年《研究與創新成果報告》

  德國聯邦教育及研究部於6月1日公布《2016年德國研究與創新報告》(簡稱為BUFI) ,由聯邦教育及研究部部長Johanna Wanka 公布,這份報告每兩年由德國聯邦教育與研究部製作一次,作為2016年的趨勢展望。以下為報告中幾項重點:   德國政府在研發的支出創下歷史新高,在最新統計數據中,就2014年已有近840億歐元投入研究和發展領域,在歐洲位居首位。另外,德國聯邦政府在產業界投入570億歐元,占德國研發總預算約三分之二,已創下歷史新高。而2015年對產業界投入的研發支出又比前一年成長6.4%。而德國勞動總人口約434萬,目前統計從事研發活動的人口約60萬人,首次創下勞動人口比例歷史新紀錄。在歐盟國家中德國本已位於領先地位,在世界競爭力指數(WCI)排名中,德國更是遙遙領先其他國家,在140個國家中排名第六。德國的研究成果亦獲得國際間的肯定,德國在學術界的地位在最近一年持續領先。在德國關於德國科學家的著作,是躋身全球最常被引用的出版物的前十分之一。德國的專利申請數量在世界上排名領先,平均註冊專利數量從2003-2013年成長約9%,在歐盟遙遙領先其他成員國,在世界上專利數量則是美國的兩倍。   德國同時是研發產品輸出為主的國家,特別是在高科技產品輸出方面,即使中國如今名列前茅,德國依舊占據前排位置。在歐盟國家中,德國則位居第一。聯邦政府將研究與創新為財政編列預算優先事項,聯邦政府持續增加研發支出,根據目前2016年的總預算中,針對研發編列了1兆5800億歐元。聯邦政府補助德國在未來重點新興領域的研發及加強中小企業創新能力。聯邦政府在高科技戰略中所列的各大議題氣候變化與能源、健康與營養、移動、安全與通訊都將予以補助。又2015年政府已針對中小企業投資了1兆4500億歐元。各邦政府在研發支出亦占各邦年度總預算比例高達40%,由此可看出德國政府對創新與研發的重視。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP