美國加州議會於2019年9月12日通過《加州法案AB 824,商業:保持人們對負擔得起的藥物之近用(California AB 824 - Business: preserving access to affordable drugs)》(下稱AB 824法案),其主要規範藥品專利侵權和解協議中之「遲延給付(pay for delay)」條款,推定其具有反競爭性,為美國第一部規範製藥公司之間簽訂遲延給付條款之州法。
於AB 824法案中,其規範對象為學名藥與生物相似性藥物之藥證申請人,統稱為「非參照藥物申請者(Nonreference drug filer)」。其規定若用來解決專利侵權之協議為「非參照藥物申請者」從主張專利被侵害的公司處接受任何有價值之物,且同意於一段期間內限制或放棄學名藥或生物相似性藥品的研究、開發、製造、上市、銷售,則該協議推定具有反競爭效果。惟例外若能證明「非參照藥物申請者」所獲得之價值僅對其他商品或服務是公平合理的補償、協議直接產生了競爭優勢,協議的競爭優勢大於協議的反競爭效果,則反競爭性之推定可舉上述事由為證而推翻。每次違規行為可處以高達2000萬美元或「非參照藥物申請者」收到的價值三倍的罰款,以數額高者為準。
AB 824法案減輕政府舉證責任的負擔,將主張和解協議不具反競爭效果之舉證責任轉移至和解協議當事人身上,且因此種推定,當事人必須向政府揭露更多和解協議之資訊,而增加協議之透明度。
本文為「經濟部產業技術司科技專案成果」
英國的1988年智慧財產權法(The Copyright, Designs and Patents Act of 1988)長久以來,對於慈善及非營利團體在公開場合或活動中播放音樂,一直給予合理使用的空間。然當相關團體受惠於此一規定時,創作人跟表演人卻不樂見此情形。因此,英國主管機關針對此一合理使用規範,在2008年對相關團體進行了意見徵詢。 在2008年10底截止的意見徵詢中,對於改變錄音著作與表演人權利的公開演播合理使用空間,提供了下列三個選項: 一、 完全廢除此一合理使用空間 二、 縮小適用的團體範疇 三、 廢除合理使用空間,但權利人只能以對雙方都公平的費率收取權利金 近日,英國政府宣布根據前述的意見徵詢結果,將廢除慈善與非營利團體的合理使用規定,從2010年4月開始這些團體將必須負擔一個固定的年費,才能在活動或公開場合中使用音樂,但截至目前為止,使用的費率為何尚未確定,但主管機關表示,希望一年不超過100英鎊。 主管機關接下來將對費率部分開始徵詢意見,對於1988年智慧財產權法也預期會進行修正,並於2010年4月開始落實相關規範。這樣的改變對於慈善團體而言固然感到失望,相關團體也以未來在活動場合中,不播放音樂或不付權利金來做為要脅,但整體發展仍有待後續觀察。
俄亥俄州通過醫療用大麻合法化在俄亥俄州長於2016年6月18日簽署通過HB523法案後,俄亥俄州正式成為美國第25個將醫療用大麻合法化的州。這項法案將在今年11月生效,並且允許重症患者使用及採買醫療用大麻。 與原本在2015年11月被退回的法案相比,娛樂性用途大麻直接被排除在本次法案適用範圍外,而且不允許個人在家裡種植或是直接抽食。因此,與一般人想像中,如同荷蘭般的大麻合法化政策相當不同。 當然,某種層面上來說,這項法案對重症病患是一大福音,他們可以合法取得大麻,不再因為持有大麻而被當成罪犯。但是俄亥俄州這部法案對於大麻使用者於現實生活中情況能帶來多大的改善,仍讓人懷疑。因為在俄亥俄州現行法律及行政系統下,俄亥俄州政府並未隨著新的法案,推行相關行政措施。一般來說,在大麻合法化之區域,通常會要求雇主不得禁止員工使用與持有醫療用大麻,或是不可以因當事人有使用、持有或散佈醫療用大麻之紀錄或習慣,而拒絕錄用或是解聘之,同時,會禁止對員工施行藥物檢查。倘若雇主有前列之行為,通常會面臨處罰,例如:主管機關會取消該名雇主原先所享有之稅捐優惠或其他惠優措施。此外,員工得因雇主反禁藥之行為,對雇主提起訴訟。是以,在缺乏相關行政配套措施的情況下,俄亥俄州的大麻使用者未來在工作場所中,仍將會面臨許多挑戰以及障礙。 總而言之,俄亥俄州通過這部法案,在法律上可謂是一大里程碑,但尚與一般大眾認知的「大麻合法化」仍存有很大的差距。同時,未在行政作為上採取相對應的保障措施,仍可以想像將來醫療用大麻使用者在社會上仍將面臨許多障礙。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
Angie's List起訴Amazon Local侵害營業秘密消費者評論服務Angie's List於本月在印第安納州提起一項聯邦訴訟,對象是Amazon Local。Angie's List作為當地交易網站,提供高達75%的本地服務,包括產品和使用經驗。但Amazon Local員工卻通過註冊成為Angie's List的會員,以獲得其他會員名單和下載網站所提供的文件,也包括其他會員的評論和相關資訊。因此20餘名Amazon Local員工被列為共同被告。 該訴訟聲明中指控相關資訊被Amazon Local所使用,用以在西雅圖建立一個競爭性的服務。Angie's List在訴訟中指稱,他在會員協議“明確禁止使用Angie's List的帳戶和資料用於商業目的”,但Amazon Local員工卻違反了契約。“Amazon Local沒有投入必要的時間,資源和合法手段發展自己的研究與Angie's List競爭,相反的,Angie's List和它的員工都選擇了秘密訪問和挪用Angie's List專有信息的快捷方式。 Angie's List指控Amazon Local違反商業機密,竊盜,侵入電腦,民事侵權,電腦欺詐與濫用盜用行為和違反契約。Angie's List請求法院判決Amazon Local賠償其損失,並禁止Amazon Local再使用Angie's List,包括已經得到的資訊。Angie's List也請求未規定的損害賠償,“不當得利”和懲罰性的和其他損害。