美國加州議會於2019年9月12日通過《加州法案AB 824,商業:保持人們對負擔得起的藥物之近用(California AB 824 - Business: preserving access to affordable drugs)》(下稱AB 824法案),其主要規範藥品專利侵權和解協議中之「遲延給付(pay for delay)」條款,推定其具有反競爭性,為美國第一部規範製藥公司之間簽訂遲延給付條款之州法。
於AB 824法案中,其規範對象為學名藥與生物相似性藥物之藥證申請人,統稱為「非參照藥物申請者(Nonreference drug filer)」。其規定若用來解決專利侵權之協議為「非參照藥物申請者」從主張專利被侵害的公司處接受任何有價值之物,且同意於一段期間內限制或放棄學名藥或生物相似性藥品的研究、開發、製造、上市、銷售,則該協議推定具有反競爭效果。惟例外若能證明「非參照藥物申請者」所獲得之價值僅對其他商品或服務是公平合理的補償、協議直接產生了競爭優勢,協議的競爭優勢大於協議的反競爭效果,則反競爭性之推定可舉上述事由為證而推翻。每次違規行為可處以高達2000萬美元或「非參照藥物申請者」收到的價值三倍的罰款,以數額高者為準。
AB 824法案減輕政府舉證責任的負擔,將主張和解協議不具反競爭效果之舉證責任轉移至和解協議當事人身上,且因此種推定,當事人必須向政府揭露更多和解協議之資訊,而增加協議之透明度。
本文為「經濟部產業技術司科技專案成果」
為推動研發制度的改革並強化研發能力及效率,日本於2018年12月14日通過法律修正案,將原《研發力強化法》(研究開発システムの改革の推進等による研究開発能力の強化及び研究開発等の効率的推進等に関する法律)更名為《科技創新成果活用法》(科学技術・イノベーション創出の活性化に関する法律),透過調整大學、國立研究開發法人(以下簡稱研發法人)的研究人員僱用制度、國家或人民安全相關研發預算的確保,以及研發法人投資科技研發成果之運用等相關制度的調整,以支持未來日本在科技創新研發能力的提升,以及研發成果的有效運用。 本次修法最大的重點,為研發法人投資研發成果運用的明文化,過去在《研發力強化法》中,僅規定研發法人得進行有助於成果運用的出資或技術協助等業務(第43條之2),但對於是否能保有因出資或技術協助所取得之收入(例如股票),則由各研發法人以其設置法另為規範;本次修正之《科技創新成果活用法》,則於第34條之5明文規定研發法人不受獨立行政法人不得持有股票的限制,可持有其運用研發成果進行技術作價投資或成立新創,所取得之股票或新股認股權,確立研發法人在支持研發成果運用上的功能與角色。
美國聯邦首席資料長委員會指出2021年工作重點之一在於促進跨機關的資料共享2021年1月6日,美國聯邦首席資料長委員會(Federal Chief Data Officers Council, 後稱CDO Council)向美國國會提交報告,報告中指出今年度的工作重點之一將放在促進聯邦政府跨機關的資料共享,以極大化政府資料的價值。 CDO Council是根據2018年的《實證決策基本法》(Foundations for Evidence-Based Policymaking Act of 2018)所設立,並於2020年1月正式召開第一次會議,該委員會的成員包含聯邦政府各部會的首席資料長(Chief Data Officers, CDO)。該委員會的任務是加強各部會利用資料作為戰略資產的能力,促進聯邦政府資料的管理、使用、保護、傳播和衍生,以達到聯邦資料戰略(Federal Data Strategy)所設定的目標。 美國農業部首席資料長兼CDO Council主席Ted Kaouk表示,以農業部所建置的農業資料共通平台(Ag DATA COMMONS)為例,農業部所屬機關間透過資料共享,已產生許多應用。 譬如:該部所屬的食品與營養局(Food and Nutrition Service, FNS)利用經濟研究局(Economic Research Service, ERS)統計的糧食不安全(Food Insecurity)資料,推動食物箱計畫(Farmers to Families Food Box Program);農業部所屬風險管理局(Risk Management Agency, RMA)使用平台上其他單位的資料,作為作物保險(crop insurance)的決策依據;農業部所屬食品安全和檢驗局(Food Safety and Inspection Service, FSIS)使用平台上其他單位的資料,來追蹤肉品加工廠的狀況。 CDO Council於去(2020)年10月成立了一個資料共享工作小組(Data Sharing Working Group),負責研究聯邦政府各機關間資料共享的使用案例,希望透過這樣的努力,強化聯邦政府的資料治理,產生高品質與即時性的資料,以此作為政府的決策依據。
FCC主席Julius Genachowski警告美國恐有頻譜危機美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )主席Julius Genachowski表示,美國政府正努力規劃商業用途頻譜(spectrum)供給量,以滿足通訊科技服務發展需求。惟諸多產業專家預測無線通訊服務運用導致頻寬需求快速增加,無線通訊擁塞情況恐將嚴重惡化。 儘管FCC已藉頻譜拍賣釋出不少頻譜,且2009年6月全美廣電數位化後(DSO),一定要件開放業者毋須取得頻譜執照便可使用所謂的「閒置頻譜」(interleaved/white space),但是頻譜匱乏的問題仍無法解決。 對此,FCC允諾將會弭平頻譜供給需求間的落差,並且列為FCC的首要任務之一。未來FCC將透過非商用頻譜重分配與鼓勵發展更有效率使用頻譜之科技,以期解決頻譜不足的窘境。 產業界與公眾安全通訊相關組織呼籲FCC應提供更多頻譜供無線通訊服務使用。不過FCC亦要求資通訊產業於研發行動寬頻新產品時,須設想頻譜供給不足,研發更有效率使用頻率的通訊技術。產官學三者間,必須相互配合與協調(尤其是業者間的「不歧視原則」),方能有效解決網路通訊擁塞及頻譜匱乏問題。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。