美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。

  該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為:

  1.  培養AI公眾信任(Public Trust in AI);
  2. 公眾參與(Public Participation);
  3. 科學研究倫理與資訊品質(Scientific Integrity and Information Quality);
  4. AI風險評估與管理(Risk Assessment and Management);
  5. 獲益與成本原則(Benefits and Costs);
  6. 彈性原則(Flexibility);
  7. 公平與反歧視(Fairness and Non-Discrimination);
  8. AI應用之揭露與透明化(Disclosure and Transparency);
  9. AI系統防護與措施安全性(Safety and Security);
  10. 機構間之相互協調(Interagency Coordination)。

  此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

相關連結
相關附件
你可能會想參加
※ 美國OMB發布人工智慧應用監管指南備忘錄草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8408&no=55&tp=1 (最後瀏覽日:2025/11/24)
引註此篇文章
你可能還會想看
新加坡金融監管局發布金融服務產業轉型藍圖,以提升金融科技創新力

  考量金融服務業面對科技之影響,金融領域必須轉型,以維持競爭力與時並進,新加坡金融監管局於2017年10月30日發布金融服務領域之產業轉型藍圖(Industry Transformation Map),旨於成為一個連結全球市場、支持亞洲發展,以及為新加坡經濟服務之全球金融中心。   該產業轉型藍圖包含了三部分,分別係:商業策略、創新與監理、以及就業與技能。   一、商業策略:成為領先國際財富管理樞紐。為推動亞洲發展,新加坡金管局預計與業界合作,將新加坡發展為私募市場融資平台。   二、創新和監管:發展重點為促進金融領域創新之普及,並鼓勵使用科學技術提升效率與創造機會,其具體方式包括: 透過API應用程式介面,鼓勵金融機構提升創造力和科技創新。 與金融機構合作打造常用的工具,如電子支付、電子身分識別(know-your-client)機制等。 促進和投資研發,開發新的解決方案,包括使用分帳式技術進行銀行間的支付與貿易融資。 擴展與其他Fintech中心之間的跨境合作協議,讓新加坡成為國外Fintech新創企業之育成基地。 使用科學技術,簡化金融機構監管。   三、就業和技能:新加坡金管局將擴大金融服務業的人才庫,加強新入和中期轉換跑道之人員在資訊科技上的專業技能。   該金融服務產業轉型藍圖之目標為,每年在金融領域達到4.3%實際增長值,並創造3,000個工作,其中金融科技領域部分達成1,000個工作機會。

歐巴馬宣布將立法保護學生數位隱私權

  美國總統歐巴馬日前表示其將訂立「學生數位隱私法」(The Student Digital Privacy Act)以確保因教育目的而被蒐集之學生個人資料將不會被用於無關之用途。換言之,該法將禁止,例如,利用所蒐集資料對學生進行精準行銷的行為,但仍會許可蒐集者利用所蒐集資料改善其所提供之軟硬體教育設備或用以幫助學生之學習品質。   針對學生之隱私保護,目前於聯邦層級至少已有家庭教育權利與隱私法(Family Educational Rights and Privacy Act,FERPA),該法及其授權法令雖賦予學生及其家長對學校所保有之教育紀錄(educational record)之蒐集、使用有知情同意權及其他如修正教育紀錄之權利。但FERPA也列了相當多的例外情形,例如,醫療資料、受雇紀錄等均不在教育紀錄之列;此外,學校亦可不經同意即公布學生的姓名、電子郵件、出生地、主修、預計畢業日期等資料。   學生數位隱私法未來如能獲國會通過成為法律,該法與FERPA的異同,及其內容與施行實務是否確有助於學生隱私之改善,仍有待觀察。

新加坡與東協八國智財局簽署合作協議,加速特定領域專利申請流程以推動東協轉型工業4.0

  新加坡智慧財產局(IPOS)於2019年8月28日2019年新加坡智財週活動(IP Week @ SG 2019)中,宣布與東協(ASEAN)八國智財局簽署合作協議,新加坡與八個東協成員國智財局將推動在金融科技、網路安全、機器人等關鍵新興科技領域的專利加速審查與許可時程,在為期兩年的試辦計畫當中,企業與研發者最快將可以在提出申請後6個月獲得專利許可,以加速東協國家在推動轉型工業4.0相關基礎建設與製造的進程(Acceleration for Industry 4.0 Infrastructure and Manufacturing,簡稱AIM),並有助於東協國家掌握工業4.0為全球所帶來預計高達1.2兆至3.7兆美元的龐大商機。   根據國際知名管理顧問公司麥肯錫公司(McKinsey & Company)的統計,工業4.0將能為東協國家帶來至少2160億至6270 億的巨大製造業商機,除了前述加速關鍵新興科技領域專利審查的AIM試辦計畫外,包含新加坡在內的九個合作國智財局將擴大合作範圍至專利合作條約(Patent Cooperation Treaty,簡稱PCT),在為期三年的試辦期間內,專利申請人將可選擇透過取得東協國際檢索局(ISA)與國際初步審查局(IPEA)的PCT報告,以加速專利申請人在其他東協國家的專利申請。新加坡透過與東協國家、世界各國的智財合作,積極推動新加坡與全球創新社群(global innovation community)的連結,不僅為全球創新趨勢提供更多價值,亦同時鞏固新加坡作為創新中心的國際地位與經濟成長動能。

美國著作權局拒絕人工智慧創作品之著作權申請

  2022年2月14日,美國著作權局(US Copyright Office)所屬之著作權審查委員會(Copyright Review Board),做出一件人工智慧(AI)創作作品不得申請著作權登記之決定,並聲明人類作者是著作權保護的必要前提。   本案申請人Stephen Thaler在2018年首次嘗試為AI「Creativity Machine」創作的藝術作品申請著作權登記,Stephen將Creativity Machine列為作者,並聲明其因擁有該AI而得透過美國著作權法第201條(b)項的受雇著作原則(work for hire)取得前述作品之所有權,且得為此作品申請著作權登記。然而,Stephen提出的申請沒有成功,著作權局認為依著作權法及相關判例,非出自於人類所作之作品不應受著作權保障,而本案AI之創作作品亦無人類的創意性投入或干預。在Stephen提出兩次複審後,著作權審查委員會在2022年做出機關最終決定,除重申僅人類之作品得受著作權保障以外,更進一步表示無權利能力的AI無法簽訂契約,故無受雇著作原則適用之可能。此外,著作權審查委員會亦指出受雇著作原則亦僅能表彰作品的所有權,並非作品是否得以受著作權保障之指標。   Stephen Thaler長年來不斷為AI之創作品爭取法律保護,除上述著作權外,其亦將名為DABUS的AI列為專利發明人,並以此就DABUS之發明在多個國家申請專利,而澳洲聯邦法院在2021年7月做出全球首個認為AI可作為專利發明人的判決。

TOP