日本於2018年6月公布「資料信託功能認定指引第一版」(情報信託機能の認定に係る指針ver1.0),期待藉此推動資料銀行發展,促進資料流通和利用。第一版指引係以資料銀行應具備之功能為中心,惟伴隨資料銀行業務發展,指引內除資料銀行基本功能外,亦應規範個人資料管理及向第三方提供資料之條件等內容,加上有論者認為第一版內有關資料銀行定義過於偏重功能描述,故總務省和經濟產業省於2019年1月起召開檢討會,重新檢討上開指引,最終於2019年10月8日公布「資料信託功能認定指引第二版」(情報信託機能の認定に係る指針ver2.0)。
第二版指引更新重點包括︰(1)修正資料銀行定義︰第一版指引僅強調資料銀行之功能,第二版則增加資料銀行之目的和資料銀行與個人間關係等內容;(2)重新定義並詳細說明資料種類和蒐集方法;(3)修正資料信託功能認定基準︰新增複數業者共同經營資料銀行,隱私保護對策以及確保資料銀行透明性和個人資料之自主控制等規定;(4)新增資料信託功能模範條款之應記載事項︰包括與限制行為能力人締結契約之程序,以及向第三方提供資料之條件等規定。為確保資料銀行透明性和個人資料之自主控制,第二版指引新增資料倫理審查會規定,要求資料銀行設置資料倫理審查會並定期向其報告,審查會則應就個人與資料銀行間契約、個資利用目的、向第三方提供資料之條件等事項提供建議。
本文為「經濟部產業技術司科技專案成果」
美國的數位服務推動小組18F(Digital service delivery,18F),因辦公室位於華盛頓特區F街18號而得名。2014年3月由總務署(General Service Administration,GSA)成立,透過業界與政府合作模式,幫助政府機關改善流程及增進效率,其所輔導的專案計畫將實際轉變政府機關提供數位服務及科技產品之運作模式,以達跨部會、機關之整合,並使對公眾的數位服務更便於使用。 18F為幫助美國各機關建造、購買及分享現代數位服務以提升政府的使用者經驗,提供了五項服務:(一)就已存的數位規格(digital component)打造訂製化產品(custom products);(二)以創新方式購買科技,使各政府能夠獲得更快、更好及產生更好結果的IT服務。詳細服務內容有代寫委外服務建議書(Request For Proposal,RFP)、開發市場利用現代技術購買IT服務、購買開放源代碼(open source code)以提升專案計畫;(三)替政府建造一安全、可擴展的工具與平台,其能更加符合需求並能夠持續為改善以達需求;(四)協助成為數位化組織,不只是增加組織內部數位化能力,更要形成數位習慣並最終促使組織文化改變;(五)透過討論會、設計工作室、指南及文件工作平台,提供及分享18F實際運用的相關現代數位化服務技術,使政府機關能自行複製及使用。 近期知名成果案例發生於加州。在加州,每一年的孩童福利服務案件管理系統超過2萬名社工利用為追蹤管理超過50萬件虐待及忽視兒童案件,若使用過時系統產生風險將無法估計,故加州政府、美國衛生與人群服務部(Department of Health and Human Services,DHHS)即利用了前述相關服務,與18F共同重新設計該系統的採購流程。從2015年11月至2016年10月,合作建立新系統不到1年的時間,導入了契約文件之簡化、模組化(modular)契約之合併、敏捷性開發(agile development)、使用者中心之設計及開放源(open source)之實踐。 首先,代寫委外服務建議書,18F於其中展示如何將專案計畫為模組化,亦即別於過往採購的傳統模式,非尋找單一開發商去建置整個已預設需求的系統,透過分離的方式,找尋不同開發商以更符合實際需求,亦能避免時間金錢的浪費,降低遲約或違約之風險。再者,聚集可能符合資格的供應商,邀請眾供應商建造以開放源代碼(open source code)方式的原型(prototype)。透過此一過程的激盪,18F從中協助評估所提出的原型、技術等,以了解供應商如何提出及是否符合使用者中心的設計。同時也能減少政府與供應商雙方的招標時間及行政成本。最後,為使加州政府機關能自行複製及使用相關現代數位化服務技術,18F示範敏捷軟體開發(agile software development)專案計畫。從中加州政府不僅瞭解如何為風險評估,且思考相關技術部門於專案計畫中的角色定位。 面臨現代化數位服務,在美國,聯邦與州政府都面臨極大挑戰。18F介入發展新模式,更能達實際需求,亦為內化之協助,利於政府自行發展其他數位服務。18F與加州政府合作之案例,或許能為國家發展數位服務運作之借鏡。
日本經產省和總務省共同發布AI業者指引草案,公開徵集意見因應生成式AI(Generative AI)快速發展,日本經產省和總務省彙整及更新自2017年起陸續發布之各項AI指引,於2024年1月19日共同公布「AI業者指引草案」(AI事業者ガイドライン案,以下簡稱指引),公開向民眾徵集意見。上述草案除提出AI業者應遵守以人為本、安全性、公平性、隱私保護、透明性、問責性、公平競爭、創新等共通性原則外,並進一步針對AI開發者(AI Developer)、AI提供者(AI Provider)及AI利用者(AI Business User)提出具體注意事項,簡述如下: (1)AI開發者:研發AI系統之業者。由於在開發階段設計或變更AI模型將影響後續使用,故指引認為開發者應事先採取可能對策,並在倫理和風險之間進行權衡,避免因重視正確性而侵害隱私或公平性,或因過度在意隱私保護而影響透明性。此外,開發者應盡量保留紀錄,以便於預期外事故發生時可以進行說明。 (2)AI提供者:向AI使用者或非業務上使用者提供AI系統、產品或服務之業者。提供者應以系統順利運作及正常使用為前提,提供AI系統和服務,並避免侵害利害關係人之利益。 (3)AI使用者:基於商業活動使用AI系統或服務之業者。使用者應於提供者所設定之範圍內使用AI,以最大限度發揮AI效益,提高業務效率及生產力。
歐盟提出通用型人工智慧模型的著作權管理合規措施建議歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
歐洲議會表決通過碳邊境調整機制草案之議會版本,增修管制範圍、施行時間、主管機關和收入利用等規範歐洲議會於2022年6月22日表決通過碳邊境調整機制(Carbon Border Adjustment Mechanism, CBAM)草案之議會版本,為該次決議通過三項草案中之一項,而包含CBAM在內之三者皆屬歐盟去年7月所公布「Fit for 55」溫室氣體減量包裹法案中的一部份,正式施行後將要求進口商向歐盟購買「CBAM憑證」,繳交進口產品對應之碳排放量費用,希望促進非歐盟國家減少碳排放以及防止碳洩漏(carbon leakage)的風險,並避免氣候政策不積極國家的企業擁有不公平優勢,以進一步降低全球碳排放。而在此次議會通過之版本中,有幾點作了調整: (1)擴大管制範圍:在產品方面,除原先歐盟執委會所提出之水泥、鋼鐵、鋁、肥料及電力等5大類產品外,歐洲議會亦希望納入有機化學品、塑膠、氫氣和氨等產品。為確保順利實施,委員會將對有機化學品和聚合物進行技術特性之評估;同時歐洲議會也計畫將管制擴大至間接排放,即包含製造商使用電力所產生之排放,以更能實際反映歐洲工業的二氧化碳成本; (2)逐步實施CBAM並提前終止歐盟排放交易系統(Emissions Trading Scheme, ETS)的免費配額:CBAM預計從2023年1月1日開始試運行,原草案規劃試運行至2025年底,現延長至2026年底;在2023年至2026年過渡期間,歐盟出口商保有100%的歐盟ETS免費配額;而自2027年起則正式施行向進口至歐盟產品之碳含量進行定價,並要求進口商購買與繳交相對應之CBAM憑證。雖然出口商仍有ETS免費配額,但該配額將逐步遞減,並於2032年之前終止免費配額制度,由CBAM完全取代之,以避免對歐盟產業有雙重保護的情形; (3)設立CBAM集中管理機構:歐洲議會認為與其在各會員國內分別指派共27個個別之主管機關(competent authorities),應設立歐盟單一機構集中管理,以提升實施效率、透明度及成本效益;同時,也可避免第三國進口商在各會員國間因管制密度之差異而有挑選法院(forum shopping)的情況; (4)CBAM收入之應用:歐洲議會建議CBAM之收益應歸入歐盟預算,以對最低度開發國家(LDCs)提供至少相當於CBAM收入的財務援助,協助其製造業脫碳,以共同落實歐盟氣候目標,以及《巴黎協定》等國際承諾。