日本於2018年6月公布「資料信託功能認定指引第一版」(情報信託機能の認定に係る指針ver1.0),期待藉此推動資料銀行發展,促進資料流通和利用。第一版指引係以資料銀行應具備之功能為中心,惟伴隨資料銀行業務發展,指引內除資料銀行基本功能外,亦應規範個人資料管理及向第三方提供資料之條件等內容,加上有論者認為第一版內有關資料銀行定義過於偏重功能描述,故總務省和經濟產業省於2019年1月起召開檢討會,重新檢討上開指引,最終於2019年10月8日公布「資料信託功能認定指引第二版」(情報信託機能の認定に係る指針ver2.0)。
第二版指引更新重點包括︰(1)修正資料銀行定義︰第一版指引僅強調資料銀行之功能,第二版則增加資料銀行之目的和資料銀行與個人間關係等內容;(2)重新定義並詳細說明資料種類和蒐集方法;(3)修正資料信託功能認定基準︰新增複數業者共同經營資料銀行,隱私保護對策以及確保資料銀行透明性和個人資料之自主控制等規定;(4)新增資料信託功能模範條款之應記載事項︰包括與限制行為能力人締結契約之程序,以及向第三方提供資料之條件等規定。為確保資料銀行透明性和個人資料之自主控制,第二版指引新增資料倫理審查會規定,要求資料銀行設置資料倫理審查會並定期向其報告,審查會則應就個人與資料銀行間契約、個資利用目的、向第三方提供資料之條件等事項提供建議。
本文為「經濟部產業技術司科技專案成果」
陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
YouTube網站被控侵害著作權美國新聞記者兼直昇機飛行員 羅伯特爾( Robert Tur )於 7 月 14 日 控告近來迅速竄紅的影片分享網站 YouTube 侵害著作權,特爾指稱 YouTube 網站鼓勵用戶拷貝受到保護的影片資料,此舉違反了 2005 年一項美國最高法院的判決( MGM v. Grokster ) ,該判決認為 P2P 軟體業者若蓄意鼓勵或誘使客戶從事線上盜版行為,即可能構成著作權侵害。 羅伯特爾聲稱,他所拍攝的 1992 年洛杉磯暴動事件以及 1994 年高速公路上追捕辛普森的直昇機空拍報導影片,未經他的同意就被上傳並在 YouTube 網站上廣為流傳。 特爾亦聲稱, YouTube 網站從他的作品中獲利,同時也侵害了他的著作權,因此提出了 15 萬美元賠償要求並要求網站不得再使用他的影片資料。 YouTube 網站發表聲明指出,自獲悉特爾提出告訴的消息後,網站就已經將他的影片撤下,另一方面認為網站的行為完全符合「一九九八年 數位千禧年著作權法案」﹙ Digital Millenium Copyright Act of 1998 ﹚之規定,應受到該法案免責條款的保護 。
歐盟發佈「降低高速電子通訊網路建置成本」草案 關於軟體產品的智慧財產權保護建議近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。 然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。 綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。 本文同步刊登於TIPS網站(https://www.tips.org.tw)