法國憲法委員會於今(2020)年6月18日宣告今年5月甫通過之《打擊網路仇恨言論法》(Lutte contre la haine sur internet, Fighting Hate on the Internet,又稱Avia Law)違憲,認該法侵害人民言論自由之權利。
為打擊網路上日益嚴重之仇恨性言論,法國國民議會於今年5月13日通過《打擊網路仇恨言論法》,該法旨在課予網路社交平台之責任,在其使用者提出檢舉後,平台應於24小時期限內移除明顯的不法言論,包含歧視、仇恨、暴力、煽動犯罪、涉及恐怖主義或兒童色情等,尤以,若該訊息涉及兒童色情或煽動恐怖主義者,則平台刪除該訊息之期限將縮短為1小時內。倘平台若未於期限內刪除之,面臨之罰緩最高達125萬歐元;如經法國高等視聽委員會(Conseil superieur de l'audiovisuel, CSA)審核,發現該平台之內容審查系統存在嚴重且反覆之缺陷者,則最高可對該平台處以其全球收入4%之罰鍰。
該法原定於今年7月1日施行,但經法國憲法委員會審查後,認該法如前述之多項條款要求私人企業判斷使用者之言論是否為明顯涉及非法,將鞏固私人審查權,高額罰款恐將促進平台積極刪除平台上之言論,違反憲法保障之言論自由,因而宣告該條款違憲無效。目前尚不確定法國政府是否會如期施行其餘條款,惟由該法即可看出,法國傾向授權CSA於對網路平台採取更嚴格監管之態度,然是否能有效抑制仇恨性言論,後續尚值得密切觀察。
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
當前日本車聯網面對之相關課題及策略目標日本總務省下設之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年4月19日第4次會議中提出當前日本車聯網面對之相關課題及策略目標。至目前為止日本智慧型運輸系統(Intelligent Transportation System)各自已發展出道路交通資訊通信系統(Vehicle Information and Communication System,簡稱VICS)、電子收費系統(Electronic Toll Collection System,簡稱ETC)、雷達防追撞(レーダー)等不同通訊技術,自動駕駛則發展至初期階段。日本當前發展中面臨其企業國際競爭力確保與強化、持續友善環境之可能性、高齡化及勞動生產力人口減少等問題。希望透過國家開發之系統及國際服務方式,利用交通資訊通信系統實現最佳的交通狀態,在人口稀少之地區利用無人駕駛系統,使駕駛不足之問題得以解決,對當地之購物及交通上可以加以協助。車聯網研究會設定之4大目標為: 零交通事故之社會 確保人之行動自由 便利、快速、安心之生活環境 生活方式的變化 透過利用車與車間通信等技術,降低事故之發生,普及車聯網等資通訊系統,車中行動模式之變革,並透過異業結合創造新的服務模式,達成安全、安心、便利之智慧聯網生活4大目標。
日本公布第6期科學技術與創新基本計畫草案並募集公眾意見,著重疫情與科技基本法修正後之因應日本內閣府於2021年1月20日發布「第6期科學技術與創新基本計畫」(科学技術・イノベーション基本計画,以下稱第6期科技創新基本計畫)草案,並自即日起至同年2月10日,對外徵求公眾意見。依2020年6月修正通過之日本科學技術與創新基本法(科学技術・イノベーション基本法,預定2021年正式公告施行)第12條規定,要求政府應就振興科學技術與創新創造的政策,擬定基本計畫並適時檢討調整,同時對外公告。而本次草案的提出,便為因應現行的第5期科學技術基本計畫即將屆期,啟動擬定下一期基本計畫。 依草案內容,第6期科技創新基本計畫延續Society5.0的願景,並以數位化及數位科技作為發展核心。但檢視至今的科技創新政策成效,數位化進程不如政策目標所預期;受COVID-19疫情影響,也提升了科技普及化應用的重要性。另一方面,科學技術基本法的修正,則揭示了人文社會科學與自然科學跨域融合運用的方向,並期待藉由創新創造納為立法目的,實現進一步的價值創造。基此,第6期科技創新基本計畫提出,應從強化創新、研究能量及確保人才與資金的三方向為主軸,結合SDGs、數位化、資料驅動及日本共通在地價值,建構出「日本模型」(Japan Model)作為實現Society5.0的框架。 針對如何強化創新能力、研究能量及確保人才與資金,計畫草案提出以下方向: (1)強化創新能力:整體性強化創新生態系(innovation ecosystem),建構具韌性的社會體系,並有計畫地推動具社會應用可能的研發活動。具體作法包含藉由AI與資料促成虛擬空間與現實世界的互動優化、持續縮減碳排放量實現循環經濟、減低自然災害與傳染病流行對經濟社會造成的風險、自社會需求出發推動產業結構走向創新、拓展智慧城市(smart city)的應用地域等。 (2)強化研究能力:鼓勵開放科學與資料驅動型之研究,並強化研究設備、機器等基礎設施的遠端與智慧機能,推動研究體系的數位轉型;以資料驅動型為目標,多元拓展具高附加價值的研究,包含生命科學、環境、能源、海洋、防災等領域;擴張大學的機能,如增進大學的自主性,從經營的角度調整與鬆綁國立大學法人的管理與績效評鑑方式等,用以厚植創新基底。 (3)人才培育及資金循環:目標培養具備應變力與設定議題能力的人才;同時藉由資助前瞻性研發,結合大學的基礎科研成果,激發創新的產出及延伸收益,並回頭挹注於研發,建立研發資金的循環運用體系。
OECD 發布2015年科學、科技與產業計分板,建議各國政府應增加對於創新研發之投資於2015年10月19日,經濟合作與發展組織(OECD)發布最新2015年OECD科學、科技與產業計分板(OECD Science, Technology and Industry Scoreboard 2015),此份報告指出,各國政府應增加對於創新研發的投資,以發展工業、醫療、資通訊產業的新領域科技,也將為氣候變化等全球性挑戰提供急需的解決措施。該報告數據顯示,美國、日本和韓國在新一代突破性科技方面具領先地位,即智慧製造材料、健康、資通訊技術這些有潛力改變現有進程的領域,尤其是韓國,最近在這些領域獲得了重大進展。自2000年以來,韓國的公共研發支出增加二倍之多,2014年GDP佔比達1.2%。反觀,許多發達經濟體的公共研發支出卻停滯不前,2014年OECD經濟體公共研發GDP佔比平均水平低於0.7%。 於2010-12年間,在智慧製造材料、健康和新一代資通訊技術領域,在歐洲和美國申請專利家族(patent families)中,美國、日本和韓國共佔到65%以上,接著是德國、法國與中國。2005-07年,韓國在這三個領域的專利家族申請數表現出最為強勁。在資通訊技術領域,韓國正致力於推動智慧聯網技術,歐盟是量子計算,中國則是巨量資料。於2013年OECD國家總研發支出實際增長了2.7%,達1.1萬億美元,但其GDP佔比與2012年相同,為2.4%。這一增長主要來自企業研發投入,而政府研發投入受到了預算合併等措施的影響。創新不止依靠研發上的投入,也依靠互補性資產,如軟體、設計和人力資本,即知識資本(knowledge-based capital, KBC)。知識資本投入已證實可抵抗經濟危機的衝擊,且2013年的數據表明各個經濟行業都增加了對知識資本的投入。但自2010年以來,許多發達國家政府資助或實施的研發減少或停滯不前。OECD警示,研發支出的減少對許多發達經濟體科技研發系統的穩定產生了威脅。鑑於OECD國家70%的研發來自企業部門,也傾向於關注特定應用程序的開發,從而改進先前的OECD計分版本,此份報告強調政府有必要保持對更具開放性的“基礎研究”的投入,始能激發與一些潛在用戶相關的新發現與新發明。