歐盟執委會(European Commission, EC)於2020年4月8日發布新聞稿,說明歐盟將制定紓困計劃,投入資金支援全球盟國對抗新冠肺炎。歐盟的行動將側重於解決急迫的衛生問題以及人道主義需求,加強盟國的健康、供水和公共衛生環境,及協助盟國發展對抗流行病的研究和準備能力,減輕疾病對國家經社之影響。
此次計劃立基於「Team Europe」,「Team Europe」是歐盟執委會因應疫情採取全球及跨境協調的紓困方案,強調整併來自歐盟、歐盟成員國及金融機構──特別是歐洲投資銀行(European Investment Bank, EIB)和歐洲復興開發銀行(European Bank for Reconstruction and Development, EBRD)──的資金,提供全球盟國立即而精準的援助,目前已投資超過156億歐元的資金。而在此次全球紓困中,歐盟短期面提供盟國資金,長期面則協助解決盟國因疫情引發的社會經濟問題。
本次紓困計畫區分為三大部分,分別為:
本文為「經濟部產業技術司科技專案成果」
經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國科羅拉多州通過《人工智慧消費者保護法》2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。
聯合國潔淨能源部長會議(CEM)宣示加強國際潔淨能源發展合作及工作任務隸屬於聯合國之下的潔淨能源部長會議(Clean Energy Ministerial, CEM)於2012年4月25-26日於英國倫敦舉行第三次會議,共有來自23國家的代表以及私人代表參與,針對潔淨能源的議題予以討論,探討如何加強各國政府間的合作,以推動公部門與私人對於潔淨能源發展的參與。此一會議中承諾支持由聯合國秘書長倡議的「全面永續能源(Sustainable Energy for All, SE4ALL)」所設定的2030永續能源目標,承諾改善能源效率、提升再生能源、及確保能源利用。相關內容包括: 1.提高能源效率 有16位參與CEM的政府代表亦參與「超高效的設備和器具部署計畫(Super-efficient Equipment and Appliance Deployment , SEAD)」,承諾將推動能源效率,以幫助消費者和企業獲得節能器具和設備。此一努力將能使消費者在未來二十年節省超過一兆美元,並且估計自2012年至2030年能減少110億公噸的二氧化碳排放。具體措施包括推出全球效率獎章的競賽(Global Efficiency Medal competition)、藉由公私合作來推廣高效能產品、加速照明設備在全球市場的轉型、建立全球通用的產品識別系統等。 2. 促進再生能源及其他低碳能源的發展 例如英國宣布投入六千萬英鎊的資金於碳捕獲(carbon capture)與儲能技術的發展。此外,丹麥,德國和西班牙發布了一個全球性的再生資源地圖,標示世界各地的太陽能和風能能源的潛力,並基於能源價格、財務成本及獎勵計劃,來評估不同國家對這些資源開發的成本效益。 3.確保能源的利用 例如義大利和美國宣布發展印度的照明計畫,將在2015年底提供200萬人現代照明服務。又,在非洲照明方案,已經提供250萬人民離網照明裝置(off-grid lighting devices)。這些計畫均附屬於「全球照明和能源利用合作組織(Global Lighting and Energy Access Partnership, Global LEAP)」,該組織宣布將對於缺乏現代能源選擇的消費者,推動低成本且確保品質的解決方案。 4. 更多跨領域舉措 包括有11個國家同意支持由澳洲和美國為首的聯合國能源計畫;氣候工作基金會(ClimateWorks Foundation)提供三年1百萬美元的技術諮詢報告於「潔淨能源解決方案中心(Clean Energy Solutions Center)」;美國與麻省理工學院(Massachusetts Institute of Technology, MIT)合作的潔淨能源計畫(Clean Energy program)中「教育與授權參與(Clean Energy Education & Empowerment Initiative, C3E)」的部分,由20多名專業婦女同胞擔任「潔淨能源大使(C3E Ambassadors)」,獎勵其在潔淨能源領域的成就等。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。