德國聯邦卡特爾署(Bundeskartellamt)於2020年7月9日公布,將針對電動車公共基礎設施產業進行調查,以釐清目前市場相關競爭法問題。
聯邦卡特爾署署長Andreas Mundt表示,建立全國性的充電基礎設施是德國電動車成功的先決條件之一,目前電動車充電基礎設施產業尚處於早期市場發展階段,因此,釐清市場是否有不正競爭問題,方能使電動車充電基礎設施布建能迅速擴張。在公共場所充電的條件和價格,也將影響消費者是否決定改用電動車。然而在目前市場發展階段時,已收到越來越多關於充電站價格和條件的投訴。
根據聯邦政府的計畫,2030年前德國將於全國範圍內布建大規模的充電基礎設施,其中包括公用的充電基礎設施。雖然充電站之布建及營運,不適用例如高壓電網擴建加速法、電網擴張法等與電網相關法規之適用。但可依德國不正當競爭防止法(Gesetz gegen den unlauteren Wettbewerb, UWG)拘束該領域可能存在的競爭法議題。除了應確保非歧視性地近用充電站外,更應研擬充電站相關使用條款,以確保充電站能正常營運。此外,並應研究城市及地方政府是否有提供合適的充電站位置,及其對充電站營運商之間的競爭影響。另外,聯邦高速公路上充電站之市場競爭狀況亦為聯邦卡特爾署關注的議題。
聯邦卡特爾署將於兩個調查階段中,向利害關係人進行產業調查。第一階段,將確定公共收費充電基礎設施的建設狀況,以及城市及地方政府和其他參與者,在規劃和提供充電站合適位置的現行作法。並在此基礎上,進行第二階段深入調查,特別針對有關移動服務提供商和使用者近用充電站的問題。
本文為「經濟部產業技術司科技專案成果」
美國國家標準技術局(National Institute of Standards and Technology, NIST)於近日(2013年7月)更新電子簽章的技術標準「FIPS (Federal Information Processing Standard) 186-4數位簽章標準」,並經商務部部長核可。NIST於1994年首次提出電子簽章標準,旨在提供工具可資促進數位時代的信賴性,後續也隨著技術進步與革新,而有多次修訂。此次修訂,主要是調合該標準,使之與NIST其他加密相關指引(如金鑰加密標準)一致,以避免將來可能產生的矛盾。 此次增訂,亦明列出三種可保護資料的簽章產製與確認技術:數位簽章演算法(Digital Signature Algorithm, DSA)、橢圓曲線簽章演算法(Elliptic Curve Digital Signature Algorithm, ECDSA)、以及RSA公眾金鑰演算法(Rivest-Shamir-Adleman Algorithm, RSA)。 其他修訂的部分,還包括語彙的明晰化,以及降低對於隨機號碼產生器的利用限制…等。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
<開原碼條例>建置醫療資源共享架構UCLA醫學中心以開放原始碼軟體Zope建置資訊系統,展開一項稱為「治療成效開放式架構」(OIO, Open Infrastructure for Outcomes) 的計畫,構築起未來醫療資訊系統的新基石。讓治療成效的資訊,能在一個共通的平台架構上進行資源分享。 長期以來,醫療資訊系統面臨的挑戰主要來自於下列三個面向:一、如何讓資訊系統提供令人滿意的服務功能,以取代將醫療記錄登載在紙張上的傳統方式。二、資訊系統的需求經常會改變,如何快速因應系統的改變需求。三、如何與其他醫療團隊夥伴,共同分享資料與工具。 OIO計劃透過資訊共享可加速醫療研究。開放式架構計畫的主要目的,並不是用來要求臨床工作者與醫療研究中心分享病歷資料,而是提供一個分享管理工具的機制,讓使用者能夠利用這些管理工具,進行資料的收集與分析,並和特定的診療研究人員進行溝通,而透過系統安全的機制,在過程當中並不會讓其他人得知資料內容。不過,如果有人想要進行管理工具或資料的進一步加值利用,僅需額外投入相當小的成本。 另外, 開放式架構計畫的設計極具彈性,除了目前所專注的治療成效資訊統計之外,其系統概念也可以用來管理客戶資訊、進銷存資訊、會計資訊等。整個系統開發環境是針對使用者而設計,而非程式人員,並且以網頁應用程式來實作,力求操作的便利性,目的之一是讓使用者能夠動手創造出自己所需的表格資料。另一方面,設計上也面對來自於法律與技術層面的挑戰,例如取得病患的同意及對系統的信任感,促使這套系統在實作時,必須能夠提供高度的修改彈性與安全性。 由於 OIO 在設計上,包含低成本、高效益、使用者導向、架構具有彈性等特色,並以開放源碼開發模式來鼓勵使用者測試及提供回饋意見,目前的應用效果持續擴大中。
美國加密法案隨潮流再起緣起於2016年的加密法案(ENCRYPT Act),由於今年發生了臉書劍橋分析事件,以及歐盟GDPR的影響,本此法案再提的聲勢如浪潮襲來,不僅眾多議員附和,連企業(如:電子前線基金會Electronic Frontier Foundation,EFF)都予以支持。 加密法案的主要內容係以兩方面進行加密應用之保護, 各州州政府不得授權或要求產品或服務的製造商、開發商、銷售商或供應商,(A)設計或更改產品或服務中的安全功能,以供其進行監視或允許其進行實體搜索;(B)使其有能力解密或便於理解加密應用後的內容。 各州州政府不得禁止加密或類似安全功能的產品或服務,進行製造、銷售或租賃、提供銷售或租賃, 或向公眾提供覆蓋的產品或服務。此外,法案亦針對相關服務或產品的定義作了明確的說明。 本法案的主要提案者美國眾議員Ted Lieu指出,與加密或資料存取相關的問題,皆應在聯邦政府的層級進行討論,而就其本身電腦科學的專業,指出在各州間保有不同的加密應用執法標準,對資安、消費者、創新,以及執法本身都是不利的,引此本法案的推動旨在強化州際商業和經濟安全,以及網路安全問題,希望能對加密應用議題作全國性的討論,而不會損害使用者在過程中的安全性。