德國聯邦內閣2020年6月24日通過「數位家庭給付法」草案(Entwurf eines Gesetzes zur Digitalisierung von Familienleistungen),該草案由德國聯邦內政、建設及家園部(Bundesministeriums des Innern, für Bau und Heimat, BMI)及德國聯邦家庭、老年、婦女與青年部(Bundesministeriums für Familie, Senioren, Frauen und Jugend, BMFSFJ)共同提出。草案目的在使多項家庭津貼與補助可以透過網路科技整併至單一申請窗口;利用數位科技的電子治理模式,簡化繁複的紙本申請流程,使用「一鍵式」(ein Klick)服務讓民眾可透過電腦或廣為普及的智慧型手機直接申請。
「數位家庭給付法」草案主要規範內容下列3個面向:
聯邦內閣目前已將該草案提交予聯邦議會審查,預計最快自2022年1月1日分階段實施。然而,德國聯邦政府考量新冠肺炎疫情期間,懷孕婦女或年輕父母採用書面申請,將大幅提高感染COVID-19病毒的風險。因此,該法允許合併申請出生證明、補助或津貼,在今年(2020年)於不來梅邦(Bremen)啟動試辦計畫,另預計明年(2021年)將於其他邦展開相關電子化的申請服務。
新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2019年7月17日發布資料保護專員之職能與培訓準則。基於新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)明文規範非公務機關必須設立至少一名資料保護長(Data Protection Officer, DPO),負責個資保護政策之制定落實、風險評鑑及個資事故處理等工作。為了使資料保護專業人員增強能力並於企業組織有效履行其職責,新加坡個人資料保護委員會就此特別發布此準則,將資料保護專員分為三種工作職能,九項專業能力,進而規劃相關培訓課程。 此準則使企業組織能就工作職能聘僱合適之資料保護專員,亦使相關專業人員能掌握清晰之職業生涯,確定自我能力與培訓課程之落差,進而調整有效實施組織之個人資料保護管理政策與流程。其分為資料保護專員、資料保護長、區域資料保護長,依據工作職能與職責區分如下: 一、 資料保護專員 需監視與評估組織之個人資料保護管理政策與程序,並確保其遵循新加坡個人資料保護法。 識別個人資料之風險,並提出風險管控之措施。 提供組織個人資料保護政策之實施與實踐證據。 定期檢視審核,分析現況並矯正改善。 識別並規劃利害關係人之需求與利益。 二、 資料保護長 制定並審查個人資料管理計劃。 根據組織職能,視需求與流程,執行個人資料保護與風險評鑑,並解決相關業務風險。 制定培訓計劃,舉辦個人資料保護政策與流程之教育訓練。 確保組織內部個人資料保護之意識。 根據業務營運與個資法遵要求之落差評估,並建立合規性流程。 透過客戶對隱私與個人資料保護之要求,做為日後促進資料創新之實施。 三、 區域資料保護長 監督資料傳輸活動,並提供個人資料保護法之領導指南。 建立區域創新之資料保護策略。 減少區域內之個資事故。 於資料創新之運用提供戰略性,為組織創造業務價值。 評估新興趨勢與科技,如隱私增強技術、雲端運算、區塊鏈、網絡安全之風險與可行性。 針對上述工作職能與職責,結合所需之專業能力,包括個人資料管理、風險評鑑管理、個資事故緊急應變、利害關係人管理、個人資料稽核認證、個人資料治理、個人資料保護之倫理、資料共享與創新思維,規劃基礎個人資料保護相關課程與進階資料創新課程,使其個人資料保護制度更專業具有規模。目前我國對於資料保護專員並無相關立法規範,若未來修法新加坡個人資料保護委員會之做法亦值參酌。
Google, Yahoo質疑猶他州的商標法立法者在高科技經營者會議後表示,「美國猶他州的法律設置商標註冊規定,將針對網路廣告競爭者可能不強制限制,而這項規定在星期一就會生效。 Google、eBay、Yahoo、微軟等公司的負責人與立法者在星期三會面,並正式對此提出抗議。 執行長克拉克說到:「我希望我們在兩個月前就能和產業互動,這對我們來說情況較佳。」 法律允許任何公司去創造一個電子商標並阻止競爭者用這些商標,去避免利用這些關鍵字商標在搜尋引擎和其他網站上出現。 星期二立法機關一致通過此項保護商標法律,儘管州律師提出警告,他們將會在法院上推翻這項法律。 Google和其他網站允許競爭者有權利去投標商標或產品的名稱。廣告競爭者會因競標而顯現在搜尋結果的網頁上。 陳情者羅傑說到,在與立法者談判後,訴訟是最不可能的方式。我們所投入的是幫助政策制定者去察覺到立法機構需要被修正並且也許需要被廢除。 羅傑說當談判破裂,這兩位發言人問我們,假使我們有意願去看到可以達到他們的意願並且不會產生可能發生有害影響的方法。 克拉克不確定是否會推翻這項法律,但他說我們必須為此做些事。 伊適特曼說,「立法者正設法去阻止公司免於被偷竊商標,或阻止戲弄消費者使他們在買產品時產生混淆的情況。」
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。
初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要 於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2] 此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3] 綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明 承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷 車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。 承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。 對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動 根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。 然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析 綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。 據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。