德國聯邦內閣通過「數位家庭給付法」草案,結合數位科技整併各項出生證明、津貼或補助申請窗口

  德國聯邦內閣2020年6月24日通過「數位家庭給付法」草案(Entwurf eines Gesetzes zur Digitalisierung von Familienleistungen),該草案由德國聯邦內政、建設及家園部(Bundesministeriums des Innern, für Bau und Heimat, BMI)及德國聯邦家庭、老年、婦女與青年部(Bundesministeriums für Familie, Senioren, Frauen und Jugend, BMFSFJ)共同提出。草案目的在使多項家庭津貼與補助可以透過網路科技整併至單一申請窗口;利用數位科技的電子治理模式,簡化繁複的紙本申請流程,使用「一鍵式」(ein Klick)服務讓民眾可透過電腦或廣為普及的智慧型手機直接申請。

  「數位家庭給付法」草案主要規範內容下列3個面向:

  1. 整合與家庭相關之津貼或補助項目:為減輕新生兒父母或監護人(Erziehungsberechtigte)的照顧負擔,BMI及BMFSFJ欲將姓名登記、出生通報、父母津貼(Elterngeld)、育兒津貼(Kindergeld)及兒童補助(Kinderzuschlag)等5項服務合併申請(Kombiantrag),匯整至單一申請窗口。
  2. 提供機關間個資合法傳輸基礎:由於申請前述的津貼或補助項目時,申請人須向聯邦政府、各邦政府、法定健康保險機構或雇用人申請相關證明文件,未來處理公共服務之機關經申請人同意合法授權下,得跨部門調閱申請服務相關之資料。
  3. 符合資訊安全及個資保護的基礎:該法要求應建立可受信賴的數位授權控管措施,且得驗證數位身分之安全層級,相關措施應符合德國「網路近用法」(Onlinezugangsgesetz, OZG)第8條及歐盟「一般個人資料保護規則」(General Data Protection Regulation, GDPR)的規範要求。

  聯邦內閣目前已將該草案提交予聯邦議會審查,預計最快自2022年1月1日分階段實施。然而,德國聯邦政府考量新冠肺炎疫情期間,懷孕婦女或年輕父母採用書面申請,將大幅提高感染COVID-19病毒的風險。因此,該法允許合併申請出生證明、補助或津貼,在今年(2020年)於不來梅邦(Bremen)啟動試辦計畫,另預計明年(2021年)將於其他邦展開相關電子化的申請服務。

相關連結
你可能會想參加
※ 德國聯邦內閣通過「數位家庭給付法」草案,結合數位科技整併各項出生證明、津貼或補助申請窗口, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8510&no=55&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
美國最高法院認定警方向通信業者取得嫌犯之通信之基地台位址資訊須持有搜索票

  繼2012年最高法院認為警方在無搜索令的情況下,以GPS追蹤裝置查探犯罪嫌疑人之位置資訊違反憲法第四修正案。最高法院於2017年6月5日,認為警方未持搜索票,而向電信公司取得犯罪嫌疑人過去127天共計12,898筆之行動通信基地台位置資訊(cell-site data)之行為,違反憲法第四修正案。   由於個人利用行動通訊服務時,必須透過基地台進行通訊,因而可藉由該基地台位置,得知每個人所在之區域位置,而此一通訊紀錄過去被電信公司視為一般的商業資訊,因為得知通訊基地台的位置資訊,無法直接得知個人所在的精準位置,僅能得知其概略所在地區。   因此,犯罪調查機關基於1979年 Smith v. Maryland案所建立之原則,即只要該個人資訊屬於企業的一般商業紀錄(normal business record),警方可以在無搜索令的情況下,向企業取得個人資訊, 此一原則又稱為第三方法則(third-party doctrine)。過去在地方法院或上訴法院的審理中,法院對此多持正面見解,認為只要該資料與進行中之犯罪偵查活動有實質關聯(relevant and material to an ongoing criminal investigation),警方即可向業者取得。大法官Sonia Sotomayor早在前述2012年GPS追蹤裝置案的協同意見書中表示,第三方法則不應適用在數位時代,例如用戶撥電話給客服人員,或以電子郵件回覆網路購物的賣方等,無數的日常活動已經大量的向第三方揭露許多資訊。   在數位時代,大量的個人資訊以電磁紀錄的形式掌握在第三方手中,本案最高法院的見解,將會對美國的犯罪調查機關在未持搜索令的情況下,更慎重的判斷向業者取得個人資訊做為犯罪偵查使用時,是否與憲法第四修正案有所違背。

美國司法部命加州柏克萊大學完備無障礙網站,確保身心障礙人士之數位人權

  針對「全國聽障協會」(National Association of Deaf, NAD)於2014年對於加州柏克萊大學提供之免費線上課程、會議、講座、表演和其他影音檔案未內建隱藏式字幕(closed captioning),向美國司法部申訴,該校違反美國身心障礙者法Americans with Disabilities Act, ADA)第二章,即收編至美國統一法典(U.S.C.)第42章第12131至第12134條,關於「提供公共服務的實體(entity)應將其服務平等地提供他人近用」相關規定,包括州行政機構、法院、立法機關、城市、郡、學校、社區大學等實體,須確保身心障礙者獲得平等機會使用州和地方政府的服務或參與其活動。   美國司法部歷經八年調查後,最終與加州柏克萊大學達成行政協議(consent decree),要求加州柏克萊大學應定期回報無障礙網站建置進度、回應公眾無障礙網站需求、內部員工相關教育訓練、定期請第三方稽核單位測試學校各平臺的無障礙網站是否達「全球資訊網協會」(World Wide Web Consortium, W3C)發布的「無障礙網站指南」2.0版(Web Content Accessibility Guidelines, WCAG 2.0)AA等級技術標準。自該協議生效日起,加州柏克萊大學以下相關網路平臺上之影音檔案,均需內建隱藏式字幕:   一、大學官網(http://www.berkeley.edu)及公眾可瀏覽且由加州柏克萊大學管理的任何相關子網域;   二、大規模線上公開課程(MOOC)平臺「UC BerkeleyX」;   三、由第三方平臺(如Apple Podcasts或Spotify)託管,加州柏克萊大學管理的所有podcast頻道或帳戶;   四、由第三方平臺(如YouTube)託管,加州柏克萊大學管理的所有影音頻道或帳戶。   從行政協議之協調方向及結果來看,加州柏克萊大學除實體環境外,和該環境具聯繫關係之網站也需要符合ADA無障礙網站規定,使得多元族群均有平等接觸社會服務和活動的機會。在數位經濟時代,各式網路活動活絡之今日,網路等線上虛擬環境與實體公共設施的無障礙同等重要;線上與線下之人權皆須獲得同等保障,亦係數位人權之真諦。

歐盟通過《外國補貼規則》並於2023年1月正式生效

  2023年1月12日,歐盟《外國補貼規則》(Foreign Subsidies Regulation, FSR)正式生效。其旨為歐盟欲有效打擊因領有外國補貼而具不公平競爭優勢之企業,以保護歐盟市場公平競爭。   2021年5月5日,歐盟執委會(European Commission)提出《外國補貼規則》草案以防範上述企業在歐盟市場進行危害競爭之行為。該規則於2022年11月分別經歐洲議會(European Parliament)與歐盟理事會(European Council)通過後,同年12月23日刊載於歐盟官方公報,並於2023年1月正式生效。   歐盟執委會於2023年2月6日公布《外國補貼規則》執行細則草案,詳細規範踐行企業併購及參與公共採購程序通知義務所應提交之資訊、調查期程及受調查企業之權利等。根據新規,執委會可調查非歐盟國家之企業財務補助(financial contribution)情形,就調查結果決定是否限制其在歐盟市場從事企業併購、參與公共採購以及其他可能影響市場競爭之經濟活動。   若併購一方的歐盟營業額達5億歐元(€500 million),且外國注資達5,000萬歐元(€50 million),相關企業須向歐盟執委會報告。另外,執委會有權解除未履行通知義務但已執行之交易。而公共採購標案方面,標案金額預估達2.5億歐元(€250 million),且參與投標之企業受外國補貼達400萬歐元(€4 million),該企業即應通知執委會,執委會得禁止接受補貼之企業或違規者得標。   歐盟執委會將考量利害關係人意見回饋後預計自2023年7月12日起實施,而部分通知義務將自同年10月12日起實施。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP