歐盟資通安全局公布《提升歐盟軟體安全性》研究報告

  歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年4月25日以歐盟網路安全驗證框架(EU cybersecurity certification framework)檢視現行安全軟體開發及維護之方式與標準,並公布《提升歐盟軟體安全性》(Advancing Software Security in the EU)研究報告。歐盟資通安全局後續將以該研究報告協助產品、服務及軟體開發之驗證,並期望能夠成為執行歐盟網路安全驗證框架相關利害關係人之非強制性參考文件之一。

  本報告指出由於安全軟體已普遍應用於日常商品與服務當中,但目前針對軟體安全事故並無相對應之安全守則及技術,故為提高軟體安全層級並緩解目前已知之軟體安全威脅,應針對安全軟體開發及維護進行規範並驗證。

  報告中除了針對軟體安全提出其應具備之要素、概述現行安全軟體開發方式及標準之缺點外,亦提出若以歐盟網路安全驗證框架針對軟體開發方式進行驗證時可考量之一些實際做法,包括:

  1. 已驗證之資訊與通訊科技(Information and Communication Technology, ICT)產品、服務或流程供應商或製造商,針對資料庫之部署及維護,除探討防止資料洩漏之方式外,尚應考量產品、服務或流程驗證過程中,進行資料共享會面臨之安全威脅以及緩解之方式。
  2. 應與歐洲標準組織(European Standards Organizations, ESOs)及標準制定組織(Standards Developing Organization, SDOs)合作。
  3. 建立一些針對軟體開發、維護及操作準則以補充現有歐盟網路安全驗證方案(EU cybersecurity certification schemes)。
  4. 針對現行不一致之軟體開發及維護規範,應考量建立較寬鬆之合規性評估(conformity assessment)標準。
  5. 借鏡現有經驗和專業知識,促進歐盟網絡安全驗證框架之適用。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟資通安全局公布《提升歐盟軟體安全性》研究報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8522&no=55&tp=1 (最後瀏覽日:2025/12/18)
引註此篇文章
你可能還會想看
日本2017年5月30日修正施行之個人資料保護法,對於家長會蒐集、處理、利用個人資料之影響

  依日本2017年5月30日修正施行之個人資料保護法的最新規定,家長會、同學會、管委會等,就個人資料的蒐集、處理、利用,應與以蒐集、處理、利用個人資料為業之公司行號,在法律上承擔相當之責任、義務。   因此自2017年5月30日起,家長會蒐集、處理、利用個人資料,需要注意以下四點:   一、經當事人請求,應刪除其個人資料。      修正後的個人資料保護法施行後,明知未經或不確定是否經學生監護人同意,而取得其個人資料,都是違法的行為。但目前已經取得的個人資料,即使明知未經或不確定是否經學生監護人同意,也不需要立即刪除。惟若當事人請求刪除,則必須立即刪除。   二、學校應善盡告知之義務,取得學生監護人之同意後,方得將其個人資料轉交家長會蒐集、利用、處理,。   修正後的個人資料保護法允許由學校取得學生監護人之同意後,將其個人資料轉交家長會蒐集、利用、處理。但如果校方未充分盡到告知義務,則有違法之虞。實務上在九州的熊本曾經發生過這樣的案例,由於家長會未依法蒐集、處理、利用其個人資料,監護人提起告訴,最後雙方在二審達成和解。   三、經過監護人同意,方得將其個人資料造冊並刊登照片   由於須明確取得學生監護人之同意,方得將其個人資料造冊並刊登照片。因此為避免學校未善盡告知義務,建議家長會直接請監護人填妥加入家長會之同意書,並於同意書上載明授權蒐集、處理、利用其個人資料之範圍。   四、遵從個人情報保護委員會的指導   若家長會有非法蒐集、利用、處理個人資料之虞,個人情報保護委員會可以檢查並限期改正。屆期如未改正,可裁處罰金或懲役。

歐盟提出共同策略架構以打造完整之創新研發供應鏈

  歐盟執委會(The European Commission)於2011年2月9日提出「從挑戰到機會:邁向歐盟研發創新補助之共同策略架構」綠皮書(Green Paper - From Challenges to Opportunities: Towards a Common Strategic Framework for EU Research and Innovation funding,以下簡稱綠皮書),以整合現有研發創新補助機制(包括FP、CIP及EIT)、改善參與容易度、增進研發之科學影響及經濟價值為目標,提出以共同策略架構(Common Strategic Framework)作為歐盟未來創新研發補助機制的構想,希冀藉此串聯基礎研究、技術服務商品化及非技術性創新等環節,以打造完整之創新研發供應鏈(innovation chain)。   歐盟共同策略架構包括了三大重點目標:1.聚焦於「提供歐盟一個世界級的科學基地」、「增進跨國間競爭」及「解決重大挑戰」;2.使歐盟研發補助更具吸引力且更易進入;3.建立更為一致的會計制度,使補助資金的使用更為容易。   歐盟綠皮書在具體作法與詳細內容上雖有待擬定,但針對現有研發補助機制之改進已提出明確方向,包括:釐清補助目標、減少法規複雜性、增進補助的附加價值與影響力,同時避免資源重覆及分散、簡化參與程序、擴大補助計畫參與、透過補助增進競爭等。此外,執委會亦已預定於2011年底提出具體立法建議,未來此一立法將為歐盟科技研發補助架構帶來如何之變革與影響,值得密切注意。

「何謂行動健康?」

  行動健康是指利用行動應用程式與智慧手機、平板、或無線裝置等行動裝置結合,運用這些裝置的核心功能,如聲音、簡訊、定位系統、藍芽、或3G、4G行動通信技術等,作為健康照護用途,以提升傳統照護品質與管理健康,減少醫療成本耗費。倘若行動應用程式具有醫療用途,可用於診斷、治療、預防疾病等,則屬於醫療器材,且該應用程式通常為醫療器材之附件,或與行動裝置結合使用而成為醫療器材,對此則稱之為行動醫療。   隨著智慧聯網(IoT)的應用,國際間對於行動健康與醫療的發展日益著重,除了鼓勵創新研發之外,也紛紛制訂法規政策因應,包括美國食品藥物管理局(FDA)在2013年9月公布行動醫療應用程式指導原則(Mobile Medical Application, Guidance For Industry and Food and Drug Administration Staff),並於2015年2月修訂;歐盟2012年提出eHealth 行動計畫(eHealth Action Plan 2012-2020),並在2014年4月針對行動健康的管理規範議題開放各類相關人士進行公共諮詢,後續在2015年1月公布諮詢結果。我國亦在2015年4月公布醫用軟體分類參考指引,以提供產業開發產品、申請查驗登記之參考。   未來,行動健康與醫療的發展將持面臨挑戰,相關問題包括行動健康與行動醫療之區分標準、行動醫療應用程式與傳統醫療軟體之監管差異、行動健康應用程式開發使用之自律性規範、使用者或病人隱私與個人資料保護、以及在研發過程中涉及的研究倫理等議題。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP