歐盟資通安全局公布《提升歐盟軟體安全性》研究報告

  歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年4月25日以歐盟網路安全驗證框架(EU cybersecurity certification framework)檢視現行安全軟體開發及維護之方式與標準,並公布《提升歐盟軟體安全性》(Advancing Software Security in the EU)研究報告。歐盟資通安全局後續將以該研究報告協助產品、服務及軟體開發之驗證,並期望能夠成為執行歐盟網路安全驗證框架相關利害關係人之非強制性參考文件之一。

  本報告指出由於安全軟體已普遍應用於日常商品與服務當中,但目前針對軟體安全事故並無相對應之安全守則及技術,故為提高軟體安全層級並緩解目前已知之軟體安全威脅,應針對安全軟體開發及維護進行規範並驗證。

  報告中除了針對軟體安全提出其應具備之要素、概述現行安全軟體開發方式及標準之缺點外,亦提出若以歐盟網路安全驗證框架針對軟體開發方式進行驗證時可考量之一些實際做法,包括:

  1. 已驗證之資訊與通訊科技(Information and Communication Technology, ICT)產品、服務或流程供應商或製造商,針對資料庫之部署及維護,除探討防止資料洩漏之方式外,尚應考量產品、服務或流程驗證過程中,進行資料共享會面臨之安全威脅以及緩解之方式。
  2. 應與歐洲標準組織(European Standards Organizations, ESOs)及標準制定組織(Standards Developing Organization, SDOs)合作。
  3. 建立一些針對軟體開發、維護及操作準則以補充現有歐盟網路安全驗證方案(EU cybersecurity certification schemes)。
  4. 針對現行不一致之軟體開發及維護規範,應考量建立較寬鬆之合規性評估(conformity assessment)標準。
  5. 借鏡現有經驗和專業知識,促進歐盟網絡安全驗證框架之適用。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟資通安全局公布《提升歐盟軟體安全性》研究報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8522&no=55&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
新加坡未來移動數據流量的疏通計畫之觀察

  Cisco於2012年2月發布預測2011至2016年全球行動數據流量將從2011年每月0.6 Exabytes上升至2016年每月10.8 Exabytes,以高達78%的年複合成長率(CAGR, Compound Annual Growth Rate)逐年攀升。根據此數據,新加坡亦預測其國內行動數據流量將以64%的年複合成長率,從2010年3.1Petabytes上升至2015年37 Petabytes。目前新加坡的電信業者為因應與日益龐大的數據流量,已著手嘗試各項商業模式,包含分級訂價(tiered pricing)、流量管理政策(traffic policy management control)、網路最佳化(network optimisation)、既有基礎建設升級(upgrading of existing infrastructure)以及採用如長期演進技術(LTE,Long Term Evolution)等新興技術和行動數據疏導策略(Mobile data offloading strategies)的發展。   另外職掌新加坡電信政策的新加坡資訊通信發展管理局(IDA Singapore),於2012年4月亦針對4G通訊系統及服務,提出頻譜重新分配之建議書,並諮詢各界之意見,以因應下階段全球移動數據領域之發展。IDA於建議書中計畫擬定以1800MHz、2.3GHz以及2.5GHz作為未來發展4G技術的主要頻段。為滿足產業所需之頻譜量,IDA預計於1800MHz頻段分別釋出2*70的對稱頻譜(paired spectrum)、於2.3GHz頻段釋出30MHz的非對稱頻譜(Unpaired Spectrum),而於2.5GHz頻段則同時釋出2*60MHz的對稱頻譜與30MHz的非對稱頻譜。除了釋出足夠頻譜外,為考量未來技術實驗以及電信業者發展全國性網路服務可能需求2*20MHz的對稱頻譜或20-30MHz的非對稱頻譜,IDA亦分別於前述三個頻段中預留2*5MHz(1800MHz)、20MHz(2.3MHz)以及於2.5MHz區段中預留2*10的對稱頻譜與20MHz的非對稱頻譜。   不過目前受到各國推崇的700MHz頻段卻未被新加坡納為現階段孕育4G技術的主要區域,同時對於900MHz是否於本次拍賣一同釋出以發展4G技術,新加坡政府仍持保留態度。對此,新加坡主要業者包括SingTel與StarHub皆已向iDA提交回覆建議書,表達此舉不符合國際未來發展趨勢並期待IDA能重新作出調整。

精品珠寶業者攻防戰-卡地亞控訴蒂芙尼竊取營業秘密

  今(2022)年2月28日卡地亞(Cartier)控訴精品珠寶領域的競爭對手蒂芙尼(Tiffany & Co.),聲稱其在卡地亞前員工的幫助下,竊取獨家商品的營業秘密。   歷峰北美公司(Richemont North America Inc.)旗下的卡地亞今年2月28日於美國紐約州法院起訴蒂芙尼和卡地亞前襄理(Junior Manager)梅根瑪莉諾(Megan Marino),控訴瑪莉諾於跳槽前下載卡地亞的高級珠寶業務機密資訊, 並於去年11月加入蒂芙尼後將資訊傳送給新同事。蒂芙尼發言人發出否認聲明,卡地亞的指控毫無根據。   根據訴訟聲明,蒂芙尼聘請瑪莉諾負責包括單價高達1000萬美元(約新台幣2.8億)的高級珠寶系列,蒂芙尼法律部門從卡地亞獲得通報後,於今年2月份解僱瑪莉諾,但卡地亞聲稱,蒂芙尼的高階主管已經獲得大量的卡地亞機密和營業秘密資訊。   這並非卡地亞第一次指控跳槽至蒂芙尼的前員工試圖竊取營業機密。2014年,卡地亞起訴一名前廣告主管,據稱其試圖讓她的前助理隨身攜帶機密資訊一同加入蒂芙尼,該訴訟於次年和解。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國食品及藥物管理局發布含有奈米物質藥物和生物製劑的最終版指引

  奈米科技發展愈加成熟,藥物和生物製劑包括主成分、賦形劑等都可能使用奈米物質,奈米藥品可包括口服藥、注射劑及局部外用藥,且適應症亦愈來愈多樣化。隨著奈米藥物申請送審的件數增加,美國食品及藥物管理局(U.S. Food and Drug Administration, USFDA)對於此類藥物的審查,除了依既有的藥品審查原則,亦必須針對奈米物質粒徑小的特性,評估粒徑之改變,是否會影響藥品製劑安全性、療效及品質。   美國食品及藥物管理局於2022年4月22日發布含有奈米粒子藥物之最終版產業指引,該指引的範圍涵蓋生物製劑以及基因治療,其要點包含:相關藥物開發原則、品質、研究具體考量因素,以及學名藥的簡易新藥查驗登記申請方式(Abbreviated New Drug Application, ANDA)。   USFDA 曾於2017年12月18日發布該指引的草案,在綜整各方意見後,本次最終版指引新增兩點修正,首先是於第27頁以下新增指引裡常用的26個名詞解釋,以協助讀者理解該份指引的重要術語;其次是學名藥廠於查驗登記時不能只證明製劑相等性,更要提供藥物動力學、藥理學、毒物學等證據以證明足夠的生物相等性,才可取得上市許可。   台灣目前仍在藥事法與特定醫療技術檢查檢驗醫療儀器施行或使用管理辦法,甚至過渡至再生製劑管理條例之法令結構調整過程中,並深受國內醫療環境與產業現況的影響;面對新興藥物研發方法在後疫情時代的快速發展,對產業可能帶來的衝擊與影響,如何並重藥物監理的審驗標準與前瞻性的促進更多有助新興藥物的發展,助益於我國老齡化社會結構的轉變,可更前瞻的參考USFDA最終版指南與標準,以加速台灣細胞治療或奈米藥物發展。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP