2020年7月澳洲競爭及消費者委員會(Australian Competition and Consumer Commission, ACCC)正式對Google提告,針對Google於2016年的一項個資改變政策的內容,以誤導的方式取得用戶同意,而擴大使用個資範圍的行為。
於2016年,Google希望透過在其帳戶中所取得的個資,連結到用戶在非Google網頁中的瀏覽紀錄,如此Google將能夠依據這些資訊,更準確的在其他網站中投放廣告,以提升廣告費收入。為結合用戶於Google及其他網站的資料,Google需更改原本的個資隱私政策,然而事實上Google並沒有實際取得用戶對於此項改變的同意,反而以類似服務改進的通知:「我們為您的帳戶加入了一些可選擇性的功能,讓您能更好掌控Google所蒐集的資訊及使用方式,同時允許Google向您展示相關的廣告」等文字,誤導用戶藉以徵得用戶對個資政策改變的同意。
雖然Google承諾於2022年後,逐步移除Chrome瀏覽器中第三方Cookie的啟用,此動作將會阻止其他網站透過網路,追蹤到Google用戶的瀏覽紀錄,但由於目前Google還是依據用戶的瀏覽紀錄,針對用戶的特定偏好投放廣告來賺取收益,因此這種廣告模式短期內不太可能有所改變。若ACCC在這次與Google的訴訟中勝訴,那表示未來業者對於取得客戶同意(包括收集使用個資)的方式,從原本習慣使用概括性描述並隱藏使用個資真正目的等用語,來取的客戶同意的模式將有所改變。
由於美國與歐洲國家消費者保護政策以及對定型化契約條款的解讀不同,在美國電子商務應用中所常見的線上契約定型化條款內容,很可能在歐洲被解釋為對消費者不公平 (unfair) 而無效。 一位在法國巴黎執業的律師表示,在 AOL Bertelsmann Online France v. Que Choisir 案件中,許多美國律師常用的定型化契約條款,例如:網際網路服務提供者擁有單方變更契約內容之權;消費者之繼續使用服務等同於默示同意新的付費條款內容;網際網路服務提供者對於網路中斷造成的損害不負任何責任;限制消費者只能依循 AOL 的服務使用約款進行損害賠償之求償;及網際網路服務提供者保有中止服務等權利之條款等,在法國法院都被解釋為不合法而無效。雖然 AOL 這個案子還在進行上訴程序,法國巴黎法院在審理另一個案件時,也將類似的條款視為無效,而該案涉案主角則是義大利網際網路服務提供者。 由於法國對於消費者保護的法規係源自於歐盟指令,而歐盟所有會員國皆須在一定期間內將指令內容納入內國法規範,一位在英國執業的律師表示, AOL 在法國法院所得到的判決,如果發生在英國甚或其他歐盟會員國,也可能得到同樣的結果。
「智慧財產報告書」:開啟企業與市場之間的對話工具 日本特許廳利用人工智慧審查專利與商標申請日本特許廳(Japan Patent Office,JPO)從去(2016)年12月開始,與NTT Data公司合作,使用人工智慧(Artificial Intelligence,簡稱AI)來系統化的回答有關專利問題,且依成果顯示,與原先運用人力回復的成果相當;JPO因此決定於今(2017)年夏天開始,將AI技術分階段應用於專利及商標的審查案,並期望能於下一會計年度(2018年4月至2019年3月),在審查業務中全面運用AI技術。 JPO指出,透過AI技術能有助於將專利及商標審查程序中繁冗的檢索程序簡化,以專利審查為例,可搜尋大量文件與檔案,進行專利先前技術檢索,以確保相關技術尚未獲得專利保護,同時也可以協助專利分類;此外,商標審查亦可利用AI之圖像辨識技術比對圖片及標誌,找出潛在的類似商標。 AI技術被證實能提升審查效率,並減輕審查人員檢索與比對部份的工作負擔,有助於抑制人工審查的長時間工作型態,根據2017年日本特許廳現況報告(特許庁ステータスレポート2017),於導入AI技術後,原本從申請到審查完成平均約2年左右之審查時間,期望可在2023年將審查期間降到14個月,讓日本成為智慧財產系統審查最快且品質最好的國家之一。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。