合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。

  在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。

  英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。

  技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 合成資料(synthetic data), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8532&no=55&tp=5 (最後瀏覽日:2026/01/05)
引註此篇文章
你可能還會想看
加拿大交通部提出加拿大自駕系統安全評估文件

  加拿大交通部(Department of Transport Canada)於2019年1月發布「加拿大自駕系統安全評估(Safety Assessment for Automated Driving Systems in Canada)」文件,該文件將協助加拿大企業評估其發展高級(SAE第三級至第五級)自駕層級車輛之安全性,並可與美國相關政策進行整合。該文件指出,因相關技術尚在發展之中,不適合使用強制性規範進行管制,因此將利用引導性之政策措施來協助相關駕駛系統安全發展。加拿大交通部於文件中指出可用於評估目前自駕車輛研發成果之13種面向,並將其分類為三個領域: 自駕技術能力、設計與驗證:包含檢視車輛設計應屬何種自駕層級與使用目的、操作設計適用範圍、物件及事件偵測與反應、國際標準、測試與驗證等。 以使用者為核心之安全性:包含安全系統、人車界面與控制權的可取得性、駕駛/使用人能力與意識教育、撞擊或系統失靈時的運作等。 網路安全與資料管理:包含管理網路安全風險策略、售後車輛安全功能運作與更新、隱私與個資保障、車輛與政府分享之資訊等。   加拿大交通部鼓勵企業利用該文件提出安全評估報告並向公眾公開以增進消費者意識,另一方面,該安全評估報告內容也可協助加拿大政府發展相關安全政策與規範。

英國將以NHS基因體醫學服務續行十萬基因體計畫

  英國政府所提出的「10萬基因體計畫(100,000 Genomes Project)」將於2018年底達成目標,而將以NHS基因體醫學服務(NHS Genomic Medicine Service)作為續行計畫,以促進個人化醫療的發展。   NHS基因體醫療服務的目的在於促進罕見疾病與癌症的診斷以及患者治療的效率,並預期在未來5年達到五百萬組基因定序,以提供具備全面性(comprehensive)以及公正性(equitable)的基因檢測。為達此目的,NHS基因體醫療服務包含5個主要內涵:連結基因體研究中心以成立國家基因體實驗室服務(national genomic laboratory service)、新的國家基因體實驗室檢測文庫(new National Genomic Test Directory)、全基因體定序的相關規範,並與英國基因體公司(Genomic England)合作開發資訊基礎設施(informatics infrastructure)、臨床基因體醫學服務(clinical genomics medicine services)以及發展基因體醫學中心服務(Genomic Medicine Centre service)、NHS負擔統合性的監管職責。   在以NHS基因體醫療服務作為續行計畫的狀況下,若合格的研發人員欲以患者的基因資料進行新藥或是新治療方式的開發需事先取得患者的同意。另外,從2019年開始,全基因定序將被納入特定患者的治療過程中,如罹患特定罕見疾病或具有治癒困難性的成年患者以及所有患有嚴重疾病的孩童患者,以加速疾病的診斷以及減少侵入性治療的次數。

日本「未來投資戰略2017」

  日本內閣官房下設之未來投資會議於2017年6月9日,以構築「Society5.0」為目標,提出《未來投資戰略2017》,宣佈未來施政將以「延長健康壽命」、「實現移動革命」、「供應鍊的次世代化」、「街道活性化」以及「Fintech」等5大領域為中心。   在實現移動革命部份,《未來投資戰略2017》計畫藉由無人自動駕駛移動服務、小型無人機和自動駕駛船隻等,提高物流效率與實現高度化移動服務,以減少交通事故和解決人力不足等問題。   與此同時,日本亦將自2018年起展開卡車列隊行駛公路實驗,以期在2022年前達成卡車列隊行駛商業化之目標;此外,亦將於2018年起在山間地帶展開以小型無人機運輸貨物之實驗。除上述自動駕駛技術之實驗外,日本亦將朝向擴大駕駛資料收集和利用,主導制定資料傳輸規格等方向努力,並計畫於2017年底擬定高度自動駕駛系統商業化相關法規及制度之整備大綱。

歐盟發布綠色政綱產業計畫,提供綠色轉型、國家補助、供應鏈韌性政策

  歐盟執委會於2023年2月1日公布「綠色政綱產業計畫(Green Deal Industrial Plan)」,該計畫主要包含淨零產品產業建立、國家補助、強化供應鏈、資金等綠色轉型重要政策。「綠色政綱產業計畫」將透過以下四大支柱協助歐盟進行綠色轉型。   (1)建立可預測、簡化且一致的管制環境   歐盟將提出《淨零產業法(Net-Zero Industry Act)》草案簡化管制框架來支持電池、風車、熱汞、太陽能板、電解、碳捕捉等技術;本法案將分析各產業部門後,建立各部門2030年能力目標,確保產業供應鏈不會遭遇瓶頸,並縮短淨零產品工廠選址和中小企業補助核准流程時間,以及增強核准流程的可預測性。另外歐盟並將提出《關鍵原物料法(Critical Raw Material Act)》草案,以管制生產淨零產品的關鍵物資,並透過回收、來源多樣化等方式來降低歐盟對第三方國家的依賴。   (2)更快的提供充足資金   歐盟將放寬各會員國的補助程序,並提高補助金額上限。另外因應中國和美國對淨零產業的補助,本計畫將提高歐盟與歐盟會員國的淨零產業補助額度,讓補助效果能和其他非會員國的補助達同樣程度。   (3)人才訓練與技術強化   歐盟將透過人才訓練、認證和補助來增加綠色及數位轉型技術之勞動力。   (4)為建立韌性供應鏈開放貿易   歐盟將加強與非會員國的自由貿易協定,增加關鍵原物料來源。歐盟也將透過《外國補助規則(Regulation on Foreign Subsidies)》保護歐盟市場的公平性、調查非會員國的傾銷行為、扭曲市場的補助。

TOP