合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。

  在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。

  英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。

  技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 合成資料(synthetic data), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8532&no=55&tp=5 (最後瀏覽日:2025/11/04)
引註此篇文章
你可能還會想看
中國大陸科技部開始進行首批國家科技成果轉移轉化示範區建設計畫

  於2016年10月14日,中國大陸科技部為落實國務院於5月9日發布之《促進科技成果轉移轉化行動方案》中,有關大力推動地方科技成果轉移轉化,並開展區域性科技成果轉移轉化試點示範的要求,開始啟動在河北以及寧波,兩個科技成果轉移轉化示範區的建設計畫。   中國大陸推動國家科技成果轉移轉化示範區之目的在於推動科技成果轉移轉化工作,以期能有助於完善區域科技成果轉化政策環境,並且提升區域創新之能力;示範區的建設重點將在於完善科技成果轉化服務體系、建設科技成果產業化載體、開展政策先行先試等方面開展工作,進行地方的創新驅動發展。   為此,中國大陸科技部並印發了《科技部關於建設河北•京南國家科技成果轉移轉化示範區的函》、《科技部關於建設寧波國家科技成果轉移轉化示範區的函》兩份政策文件,其中河北•京南示範區的重點在於配合北京、天津,以及河北的區域協同發展,充分發揮跨區域輻射帶動作用,並且承接北京及天津的創新要素外溢轉移,以及與河北產業創新需求進行對接。而寧波示範區將則以科技成果轉化對產業和企業創新發展的對接為核心戰略,發展以企業為主體的科技成果轉移轉化示範區域。並以這兩個示範區的測試來探索模式、累積經驗。

從日本農業數據協作平台WAGRI擴建為智慧食物鏈歷程談因應疫情之智慧化措施

從日本農業數據協作平台WAGRI擴建為智慧食物鏈歷程談因應疫情之智慧化措施 資訊工業策進會科技法律研究所 劉宥妤 副法律研究員 2020年10月8日 壹、前言   我國近年積極發展智慧農業,一般農企業或農民發展智慧化過程中,面臨高額的設備建置、維護成本使其卻步,因此創設新的農業數據流通運用商業模式將能降低智慧化門檻,成為智慧農業普及落地之關鍵。本文將研析與我國農情相近之日本推動智慧農業數據流通運用之策略,作為我國智慧農業發展之借鏡。   日本與我國同樣面臨從事農業者高齡少子化以致後繼無人,日本政府於2016年提出Society 5.0概念,期待以資通訊(Information and Communication Technology,ICT)技術帶動發展社會各個領域[1],於農業領域利用農業ICT可使資深農民內隱知識成為外顯化數據而利於經驗傳承。   日本當時民間企業已有開發眾多ICT系統服務技術,不同業者因未進行合作,其提供的系統服務互不相容,ICT系統服務產出之數據格式、標準不一;另一方面,公部門(研究、行政機關)內的資料亦各自分散管理。為促進農業數據整合管理、流通運用,日本農業數據協作平台(WAGRI[2])因而催生。 貳、日本農業數據協作平台WAGRI發展歷程 一、日本首相指示建構數據平台   日本政府於2017年3月24日召開第6回「未來投資會議[3]」,作為主席之首相安倍晉三提到:為了能栽培出安心可口的作物,官方、民間應互相拿出作物生長狀況、氣候、地圖等更新資料,並且於2017年年中建構無論任何人均可簡易利用的資訊協作平台,必要數據須完全公開,交由IT綜合戰略本部[4]將前述平台規劃具體化。   於2017年6月9日召開的第10次未來投資會議中,公布「未來投資戰略2017[5]」,以實現「Society 5.0」為目標,其中提到於農、林、水產業領域,奠基於公部門保有之農業、地圖、氣象等公開化資訊,能夠共有活用各種數據的「日本農業數據協作平台(下稱WAGRI)」將於2017年開始建構。 二、WAGRI試營運   WAGRI由內閣府「策略性創新創造計畫(Strategic Innovation Promotion Program,SIP)」第1期計畫11個課題之一「次世代農林水產業創造技術」[6]支持(管理法人為農研機構[NARO][7]),由慶應義塾大學SFC研究所[8]建置,與參與SIP研究計畫聯盟,包括農業生產法人、農機製造商、ICT供應商、大學與研究機關等(例如日本IT企業NTT [Nippon Telegraph and Telephone Corporation]、富士通[Fujitsu Limited];農機大廠久保田[Kubota Corporation]、洋馬[Yanmar Holdings Co., Ltd.][9])共23個組織一同建置,具備「合作」(打破不同系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式得以促成數據交換利用商業模式建立)、「提供」(由公私部門提供土壤、氣象等數據得以促成數據取得和後續流通)三大功能之WAGRI,試營使用時已有實作案例指出,活用WAGRI後在數據蒐集與利用上的勞力與時間成本明顯縮減[10]。 三、WAGRI自主營運   2019年4月以農研機構(NARO)為營運主體,正式營運開始原本由SIP計畫支援,轉由農研機構(NARO)正式營運。   今(2020)年4月更新WAGRI平台利用資訊自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用[11]: 1. 數據利用者(利用WAGRI數據者)、數據利用暨提供者(利用WAGRI數據且提供數據予WAGRI者) 平台利用月費5萬日圓 若利用有償數據時,須另外支付數據使用費 2. 數據提供者(提供數據予WAGRI者) 平台利用月費3萬日圓 但書:若僅提供之數據屬於無償者,原則上不需要繳納平台利用費 參、因應疫情WAGRI擴散之應用   日本SIP第2期計畫12個課題之一「智慧生物產業與農業基礎技術[12]」所支持的「智慧食物鏈聯盟[13]」,將擴張SIP第1期計畫所建置之WAGRI,建構智慧食物鏈平台(簡稱WAGRI-dev),智慧食物鏈聯盟主要任務為建構智慧食物鏈(預計於2025年開始商業化服務),促使食物的加工、流通、銷售、出口相關數據可相互運用,以作為日本生鮮物流之基礎,將架構於WAGRI之基礎擴建為WAGRI-dev。   為因應疫情,今(2020)年4月7日聯合國糧農組織(Food and Agriculture Organization of the United Nations,FAO)和世界衛生組織(World Health Organization,WHO)聯合發佈「針對食品安全監管部門防控新型冠狀病毒肺炎(COVID-19)與食品安全的臨時指南[14]」,由日本SIP計畫課題「智慧生物產業與農業基礎技術」之智慧食物鏈聯盟,基於前述指南制定「新冠肺炎(COVID-19)對應指針」;同樣作為前述課題一環的「日本食品指針協作系統(簡稱WAGRI.info)」[15]為因應疫情而產出相對應的應用。   WAGRI.info,於7月13日開放網站受理食品、農產品相關業者進行食安登錄,不限於符合新冠肺炎對應指針,符合既有之品質・安全管理指針(例如:危害分析重要管制點[Hazard Analysis and Critical Control Points,HACCP])等即可申請登錄,並具備企業檢索功能供一般大眾使用。   WAGRI.info為WAGRI-dev之一環,未來將陸續添加多樣數據協作機能、防止數據竄改與不法入侵等措施。日本政府從原本期待藉由擴張WAGRI打造出從生產,以至加工、流通、銷售、出口等,建構一世界首度智慧食物鏈之外,因應疫情增加相關機能以建構食安資訊網。   我國亦有智慧農業數據相關平台提供OPEN DATA介接功能[16]、開發食安溯源整合應用系統,提供校園午餐食材流向資料,日本WAGRI整合與共享數據的模式可作為我國發展智慧農業活用數據之借鏡外,WAGRI.info之作法亦可供國內因應疫情之食安政策參考。 [1]〈科学技術基本計画〉,內閣府網站,https://www8.cao.go.jp/cstp/kihonkeikaku/index5.html(最後瀏覽日:2020/10/08)。 [2]WAGRI代表的是作為一數據平台 ,由各式的數據與服務連環成一個輪,調和各個社群、促進「和」諧,期待引領農業領域之創新,由WA+AGRI組合而成(WA是和的日文+農業AGRI),WAGRI網站,https://wagri.net/ja-jp/(最後瀏覽日:2020/10/08)。 [3]作為日本政府實施經濟政策與實現成長戰略之指揮總部所設置的日本經濟再生本部,從2016年起約每月召開「未來投資會議」,討論成長戰略與加速社會結構改革以擴大對未來之投資。〈日本経済再生本部〉,首相官邸網站,http://www.kantei.go.jp/jp/singi/keizaisaisei/(最後瀏覽日:2020/10/08)。 [4]日本政府積極展開推動活用IT科技做為解決各領域社會議題之手段,從2000年日本施行IT基本法(高度情報通信ネットワーク社会形成基本法),於隔年依法設立IT戰略本部(高度情報通信網路社会推進戦略本部),2013年依據政府CIO(Government Chief Information Officer)法於内閣官房設立「內閣資訊技術政策局局長(内閣情報通信政策監,簡稱政府CIO)」,IT戰略本部與政府CIO統整為IT綜合戰略本部(高度情報通信ネットワーク社会推進戦略本部,IT総合戦略本部),以迅速推動促成高度資通網路社會的重點政策,打破省廳的縱向斷層,整個政府橫向串聯。〈高度情報通信ネットワーク社会推進戦略本部(IT総合戦略本部)〉,首相官邸網站,https://www.kantei.go.jp/jp/singi/it2/,(最後瀏覽日:2020/10/08)。 [5]許祐寧,〈日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標〉,資策會科法所網站,2017/08,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&i=72&d=7844(最後瀏覽日:2020/10/08)。 [6]內閣府聚焦「Society 5.0」重要課題,結合未來投資會議施政重點領域,編列年度科技預算,創設並推動「策略性創新創造計畫(戦略的イノベーション創造プログラム,Strategic Innovation Promotion Program,SIP),SIP第1期計畫為2014年度到2018年度共5年期的計畫。〈戦略的イノベーション創造プログラム(SIP:エスアイピー)〉,內閣府網站,https://www8.cao.go.jp/cstp/gaiyo/sip/index.html(最後瀏覽日:2020/10/08);邱錦田(2017),<日本實現超智慧社會(社會5.0)之科技創新策略>,國家實驗研究院網站,https://portal.stpi.narl.org.tw/index/article/10358(最後瀏覽日:2020/10/08)。 [7]農研機構,日本國立研究開發法人農業・食品產業技術綜合研究機構The National Agriculture and Food Research Organization,簡稱NARO。 [8]位於慶應義塾大學湘南藤澤校區的政策・媒體研究科、綜合政策學系、環境情報學系的附屬研究所,簡稱SFC研究所,為推動日本智農發展之重要學研單位,任職於該所教授神成淳司為WAGRI研究負責人,同時身為內閣官房副政府CIO、IT綜合戰略室長代理,促成「農業情報創成·流通促進戰略」產出,亦身兼WAGRI協議會會長、NARO 農業共通資訊總監之角色,促成WAGRI與日本智慧農業實證計畫串接,其為日本政府推動農業數據流通之重要角色,促進日本智農發展不餘餘力。SFC研究所網站,https://www.kri.sfc.keio.ac.jp/(最後瀏覽日:2020/10/08)。 [9]IoTNEWS,〈マイクロソフト、産官学連携で構築する「農業データ連携基盤」でMicrosoft Azureを活用したデジタル農業を実現〉,2017/05/15,https://iotnews.jp/archives/56366(最後瀏覽日:2020/10/08)。 [10]神成淳司,〈ICTが社会を変える : 農業データ連携基盤の展開と未来図〉,《技術と普及 : 全国農業改良普及職員協議会機関誌》, 12月號,頁24-26(2017);農林水産省技術政策室,〈農業データ連携基盤の構築について〉,2018/09,http://www.affrc.maff.go.jp/docs/smart_agri_pro/attach/pdf/smart_agri_pro-15.pdf (最後瀏覽日:2020/10/08)。 [11]〈農業データ連携基盤(WAGRI)の2019年度以降の利用について〉,2019/4/2,農研機構網站,https://www.naro.affrc.go.jp/project/research_activities/laboratory/rcait/130311.html(最後瀏覽日:2020/10/08);〈農業データ連携基盤(WAGRI)利用申請〉,農研機構網站https://www.naro.affrc.go.jp/laboratory/rcait/wagri(最後瀏覽日:2020/10/08)。 [12]同註6,SIP第2期計畫為2017年度末到2022年度共約5年期的計畫。 [13]智慧食物鏈之建構為該課題的主要研究之一,智慧食物鏈聯盟成員包括:由内閣官房、内閣府、農林水產省等政府組織作為觀察員,由地方自治體、學術研究機關、農業生產法人、批發市場、中盤商、物流業、零售業、製造商、ICT供應商等超過70個組織參與(聯盟代表為慶應義塾大學SFC研究所),參註13;〈「SIP第2期 「スマートバイオ産業・農業基盤技術」シンポジウム2020 -新たなスマートフードチェーンの構築をめざして-」〉,2020/03/10,WAGRI網站,https://wagri.net/ja-jp/News/generalnews/2020/20200310(最後瀏覽日:2020/10/08)。 [14]See FOOD AND AGRICULTURE ORGANIZASTION OF THE UNITED NATIONS [FAO], COVID-19 and Food Safety: Guidance for Food Businesses: Interim guidance (Apr. 7, 2020), http://www.fao.org/family-farming/detail/en/c/1275311/(last visited Oct. 8, 2020).〈聯合國糧農組織和世界衛生組織聯合發佈針對食品安全監管部門防控新冠肺炎(COVID-19)與食品安全臨時指南〉,中國大陸檢驗檢疫科學研究院網站,http://www.caiq.org.cn/kydt/902625.shtml(最後瀏覽日:2020/10/08)。 [15]WAGRI.info 事務局,〈「WAGRI.info(食品ガイドライン連携システム)」のWEBサイト開設、事業者登録受け付け開始〉,2020/07/13,https://kyodonewsprwire.jp/release/202007131927(最後瀏覽日:2020/10/08);日本食品指針協作系統WAGRI.info網站,https://www.wagri.info/(最後瀏覽日:2020/10/08)。 [16]智慧農業共通資訊平台網站,https://agriinfo.tari.gov.tw/(最後瀏覽日:2020/10/08);〈智慧農業4.0共通資訊平台建置(第二期)成果發表會〉,2019/12/12,智慧農業網站,https://www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0J141518566276623429&sid=0J338358950611186512(最後瀏覽日:2020/10/08)。

奈米技術可能對健康與環境產生危害,專家呼籲應加強檢測與管制

  美國環境保護局(US Environmental Protection Agency)考慮對使用於殺菌或抑菌功效之奈米銀予以列管,這項決定與Samsung推出的洗衣機產品有關,這項新產品強調在洗衣的過程中,加入一種可以殺菌的奈米銀物質(nano-silver),不過這項物質卻被認為可能會釋放對人體及環境有害的物質,導致EPA決定加強管理。   奈米技術是有關極小化物質的創造與使用的技術,且極小化物質的尺寸僅比原子大一點,約在一奈米及一百奈米之間,一奈米等於是十億分之一尺,人類的頭髮大約是八萬奈米。除了洗衣殺菌的功能外,奈米銀已因為殺菌的功能而被廣泛用在諸多產品中,包括鞋、襪、儲存容器等等。目前政府與業界一般假設,以既有管理化學物與其他物質的法規來管理奈米物質,尚稱妥適。   就在EPA考慮對使用在殺蟲劑中之奈米銀予以列管之際,環境科學專家也呼籲政府及業界應正視奈米物質潛藏的危害,儘速制訂檢測及管制之法規。舉例而言,本(十二)月初在自然雜誌(Nature)所刊登的一篇有關奈米技術安全性挑戰的文章指出,雖然現今許多有關奈米毒性的探討都是基於學說假設,但這些學說其實具有高度的可信度。   新近有關奈米物質毒性的研究調查報告更顯示,從細胞培養物及動物體內可發現,奈米物質的大小、表面積、可溶性與其可能的形狀等,均可能與毒性之所以產生的原因有關。專家因此擔心,在研究人員積極推出奈米級產品的同時,恐怕對於奈米物質可能產生毒性的問題,未予以適度的重視。因此,EPA目前跨出的雖僅是管理奈米技術的一小步,但環境專家認為,對於公眾健康與環境安全的保障來說,這代表邁向正確方向的一大步。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP