「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。
在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。
英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。
技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
本文為「經濟部產業技術司科技專案成果」
為迎接數位貨幣此種新興產業所帶來的挑戰,在企業經營者與立法者的同意下,北卡羅萊納州於2016年6月通過H.B. 289法案,擴大該州貨幣傳輸法(Money Transmitters Act )的適用對象,將虛擬貨幣交易所納為貨幣移轉服務商,其須向主管機關申請特定執照,並繳納保證金,立法者更於2017年追加繳納保險金的規定,以避免資安危機。法案內對虛擬貨幣的定義為,一種能表彰價值的數字,可經由電子交易並具有交易媒介(medium of exchange)、計價單位(unit of account)和價值儲存(store of value)等功能,但虛擬貨幣並不是美國政府所承認的法定貨幣(legal tender status)。 又虛擬貨幣的經營業務,範圍包含建立於區塊鏈的虛擬貨幣活動,但排除挖礦者、使用區塊鏈技術的軟體公司,像是智能合約平台(smart contract platforms)、智能資產(smart property)等適用對象。申請貨幣移轉業務執照,須繳交1500美金的費用,再加上每年至少5000美元的評估費用。此外,為保障使用者所要求的保證金部分,貨幣移轉金額若低於100萬美元者,必須提出15萬美元作為擔保,若超出100萬美元者,則須提出更高的保證金。此項法案的出爐強化了法律的明確性,為該州經營虛擬貨幣的業者,提供一項可預見的規範,該法案未來是否能成為其他州成立新法的指標,仍有待後續發展。
基因轉殖複製羊 創造生技產業的新利基台灣複製動物技術又邁向新的里程碑。行政院長謝長廷於 9月8日上午宣布台灣第一頭外帶基因轉殖複製羊「寶鈺」,成功繁殖下一代,並將人類第八凝血因子成功遺傳給下一代。 目前人類第八凝血因子市價每公克價值 290萬美元﹙相當於新台幣8千萬元﹚, 全球每年約需要 300公克,預計將創造8億至9億美元價值的市場,由於「寶鈺」母子成為凝血因子供應源,其產值及身價自然十分驚人。雖然距離商品化階段仍有一段距離,但此項技術於世界已屬領先。 「寶鈺」順利產下後代將創下我國體細胞製動物正常繁殖後代之首例,以及開創基因轉殖羊之下一代傳承母羊外源基因人類第八凝血因子之生物科技的突破,未來運用複製與基因轉殖科技,利用家畜泌乳系統作為生物反應器以生產醫藥蛋白,將可成為台灣生技產業之利基點。
世界經濟論壇發布《贏得數位信任:可信賴的技術決策》世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。 由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟: 1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。 2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。 3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。 4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。
從間諜軟體談起