「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。
在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。
英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。
技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
本文為「經濟部產業技術司科技專案成果」
英國通訊管理局Ofcom近日(2008/12/5)對於英國電信(British Telecommunications, BT)的網路部門Openreach,針對全迴路(fully unbundled line)、分享式迴路(Shared unbundled line)、住宅批發線路出租(Residential wholesale line rental)、商用批發線路出租(Business wholesale line rental)等等接取服務的批發價格提出諮詢文件。 Openreach是Ofcom基於管制需求要求BT所單獨成立的一個網路部門,主要業務為批發電信服務給通信供應商。自2006年成立後至今,原細分化出租之電路線路從123,000 條提升到超過五百萬條,透過批發接取服務的競爭,直接刺激零售電信服務市場的競爭,使消費者有更多的服務選擇以及更物有所值。 除了諮詢批發價格之外,Ofcom在該文件中提及對Openreach的批發服務設立價格上限。之前的批發價格並不包含因每年的通貨膨脹率所進行的調整或修改,在本次文件中則認為通貨膨脹確實會影響Openreach的成本,現在則應如實的反映這樣的調動。Ofcom認為,新的價格將可帶來持續性的寬頻及語音市場競爭,且可以確保Openreach有適當的誘因繼續投資新的建設。 Ofcom在諮詢文件中對於2009年10月後的年度批發價格:全迴路:85.00英鎊 ~ 91.00英鎊(目前是81.69英鎊);分享式迴路:15.60英鎊 ~ 16.20 (目前是15.60英鎊);商用批發線路出租:106.00 ~ 110.00英鎊(110英鎊);住宅批發線路出租:100.68英鎊 ~ 104.40英鎊(目前是100.68英鎊);而其他相關費用調整,依據其成本適時增加。 在諮詢各界意見後,Ofcom預計在2009年4月確定新的批發價格。
大倫敦政府提倡倫敦城市資料市集大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「城市資料策略」(City Data Strategy),以發展「城市資料市集」為核心的「數位倫敦」(Data for London) 計畫,希望與合作夥伴共同推展「城市資料市集」,以節省資金、培育創新、推動經濟成長,並迎接可能之挑戰。 「數位倫敦」將城市資料分為開放資料(Open Data)、民間企業資料(Private Data)、商業資料(Commercial Data)、感知資料(Sensory Data),及公眾來源資料(crowded-sourced data)等5個類型。此外,蒐集之資料類型及如何使用該等資料,亦為計畫的執行重點之一。 「數位倫敦」之實施計畫(Implementation Plan)分短、中、長期,以近期發布之短、中期的路徑圖而言,大倫敦政府計劃在2年內分 5個階段,從編制資料目錄,建立資料庫聯盟,利用雲端系統建置一能預測並開發、利用新資料來源之資料庫,並以「引用資料,而不複製資料」之原則,持續與公開來源社群及夥伴合作。 「城市資料市集」作為發展大倫敦基礎設施建設之一環,從資料蒐集、過濾檢測、資料庫平台管理、整合平台及服務,進而建立新商業模式,期將倫敦打造成世界首屈一指的智慧城市。
FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」 為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。 根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括: (1) 醫療器械可能帶來好處程度。 (2) 醫療器械存在的風險程度。 (3) 關於替代治療或診斷的利益-風險之不確定程度。 (4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。 (5) 公共衛生需求的程度。 (6) 依據臨床證據可支持上市前之可行性。 (7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。 (8) 上市後緩解措施的有效性。 (9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。) (10) 對於早期患者訪問醫療器械的可能帶來的益處。 本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。
日本著作權法修正促進人工智慧開發2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。 日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。 本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。 惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。