美國佛羅里達州州長於2020年6月30日簽署「基於保險目的之基因資訊法」(Genetic Information for Insurance Purposes)法律修正案,並於2020年7月1日正式生效施行。本次「基於保險目的之基因資訊法」修正重點有二:
同時,本次「基於保險目的之基因資訊法」修正理由亦明確說明:禁止醫療保險、人壽保險及長期照護保險之保險人利用基因檢測結果,並非禁止保險人依據醫療紀錄和醫療診斷結果進行核保或計算保險費費率,以此釋疑保險人對此次修正之擔憂。
美國聯邦參議院於2008年即通過「基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008, GINA),惟「基因資訊平等法」僅禁止醫療保險保險人利用基因資訊進行核保,並未禁止其他類型之保險人。美國佛羅里達州本次修正「基於保險目的之基因資訊法」將人壽保險和長期照護保險一併納入規定,是全美首次擴大禁止利用基因資訊進行核保之保險類型。
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。
歐盟提出人工智慧法律調和規則草案歐盟執委會(European Commission)於2021年4月21日提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(簡稱AI規則草案),旨在平衡「AI運用所帶來的優勢」與「AI對個人或社會所帶來的潛在負面衝擊」,促使會員國在發展及運用AI時,能採取協調一致的態度及方法,共同維護歐洲公民基本權利與歐盟價值。 歐盟自2019年起即倡議發展「值得信賴的AI」(Trustworthy AI)。AI規則草案之提出,除了落實執委會2019年至2024年之政策願景外,亦呼應2020年歐洲議會(European Parliament)之建議—針對AI應用之機會與利益採取立法行動,並確保合乎倫理原則。惟鑒於歐盟在環境、健康、公共事務、金融、交通、農業等領域對AI應用之高度需求,以及企業仰賴AI技術提升競爭優勢等因素,執委會係以「風險為基礎」之概念取向(risk-based approach)制定AI規則草案,避免對新技術發展造成不必要的限制或阻礙。 本規則草案將AI系統,依其「對歐盟基本權利或價值所創造的風險程度」,分為下列三種類型,並施以不同程度的監理方式: 一、不可接受之風險:原則上禁止使用此類型AI系統或使其進入歐盟市場。例如:利用潛意識技術操控個人、在公共場合利用「即時遠端生物辨識系統」進行執法、公務機關普遍對個人進行社會評分等。 二、高風險:於附錄中列出所謂高風險AI系統,要求高風險AI系統之提供者遵循風險管理、資料治理、文件紀錄保存、透明性與資訊揭露、人為監督、健全性、準確性與資安等要求;且AI系統進入歐盟市場前,需進行符合性評估(conformity assessment),進入市場後,則需持續監控。 三、非不可接受之風險亦非高風險:鼓勵AI系統提供者或使用者,自願建立行為準則(codes of conduct)。 AI規則草案亦鼓勵會員國建立AI監理沙盒(regulatory sandbox)機制,且以中小企業、新創公司為優先對象,使創新AI系統進入市場之前,能於可控環境中依明確計畫進行開發、測試與驗證。
科技產業申請租稅減免 國稅局:申報浮濫高科技企業申請促產條例相關租稅減免浮濫,尤其是在可享高額抵減的研發項目上,爭議最多。實務上,人才培育的投資抵減減稅空間較少,頂多幾十萬元或幾百萬元,但研發投資抵減最高可達幾十億元,因此常見的爭議也最多。由於研發費用可提列為費用、又可抵稅,對企業來說效益很高,因此很多公司都先申報為研發費用,等被國稅局查到再說;另將製造、銷售費用列為研發費用的情形不勝枚舉。 依照公司研究與發展及人才培訓支出適用投資抵減辦法審查要點第1點附表,研發支出只有包括全職研發人員薪資等九種支出才能抵減,而且業者須附薪資表及證明文件證明,才能減稅。但因為研發誘因優渥,企業總是先報再說,因此行政法院投資抵減的相關訴訟,十之八九都是國稅局勝訴。根據公司研究與發展及人才培訓支出適用投資抵減辦法第5條規定,公司的研發支出,在同一課稅年度內得按百分之三十抵減當年度應納營所稅額;支出總金額超過前二年度研發經費平均數者,超過部份得按百分之五十抵減當年度應納營所稅,當年度營所稅額不足抵減者,得在以後四年度營所稅額抵減。 國稅局提醒,申請研發減免企業必須提供研究計畫等證明,否則舉證不足反將被國稅局要求補稅,恐衝擊公司當年獲利。一般來說,適用投抵減稅金額愈高的公司,也愈常被選案查核,確保公司沒有僥倖逃稅心理。如果投抵項目涉及大陸地區,像是人才培訓支出,則應依臺灣地區與大陸地區人民關係條例第24、25、25條之1條等法令規定,經主管機關核准,否則也將遭國稅局剔除補稅。
美國白宮公布「聯邦政府與私部門提升智慧電力市場再生能源與儲能現況簡報」美國白宮在2016年6月16日舉行「提升智慧電力市場再生能源與儲能行動方案高峰會」,並於會後公布「聯邦政府與私部門提升智慧電力市場再生能源與儲能現況簡報」(Federal and Private Sector Actions on Scaling Renewable Energy and Storage with Smart Markets)等全美在此領域所採的各項措施。 白宮指出:目前透過新的行政部門行動措施與33州政府及私部門的承諾,除了將加速再生能源與儲能的電網整合,並預計在未來5年增加1.3GW的儲能採購與部署。 在聯邦政府方面,相關的行動包括白宮經濟顧問委員會(White House Council of Economic Advisers)就整合再生能源的電網技術與經濟面向發佈新報告、聯邦政府承諾進行增加聯邦與軍事基地的儲能與微電網的計畫,並提供偏鄉社群微電網建置資金,與能源部(DOE)促進能源資料的使用與標準化。 在私部門方面,相關的行動則有16家電業在至少8州公布未來5年的儲能採購與部署目標、投資人承諾在能源儲存領域投入1億3千萬美元資金,和電力公司與開發商承諾部署智慧熱水器、智慧電表,與需量反應計畫。 在上述措施中,加州公共事業委員會(California Public Utilities Commission, CPUC)承諾為更可靠的電網建立管制架構,並使用戶可從不同的分散型能源資源選擇,同時促進智慧電表與電網運作情形資料的蒐集、分析與散佈。 而綠色按鈕聯盟(Green Button Alliance)則宣布將以示範計畫提供聚集、匿名的能源使用資訊供研究與公益使用。目前規劃此示範計畫將由參與的電業透過智慧電表部署所提供的匿名能源使用資訊建立資料庫。