日本學術會議於2020年9月15日提出「邁向感染症對策與社會改革之ICT基礎建設強化和數位轉型推動」(感染症対策と社会変革に向けたICT基盤強化とデジタル変革の推進)法制建議。新冠肺炎疫情突顯出日本ICT基礎建設不足和急需數位轉型之問題,日本學術會議從「醫療系統之數位轉型」、「社會生活之數位轉型」和「資安與隱私保護」等觀點提出建議,希望能在確保資安及隱私的前提下,達到防止感染擴大與避免醫療崩壞,以及減少疫情對社會經濟影響等目標。針對「醫療系統之數位轉型」,未來應建立預防和控制感染症之綜合平台,統一地方政府感染資訊之公開內容、項目,檢討遠距醫療和數位治療法規,進行相關法制環境和基礎設施之整備;針對「社會生活之數位轉型」,日後應積極推動遠距醫療、遠距工作和遠距教育,並進行所需基礎建設、設備和人才培育之整備;針對「資安與隱私保護」,除檢討建立利用感染者個人資料,以及可知悉個人資料利用狀況之制度,亦應擴大及強化信用服務(trust service)和感染資訊共享系統等措施。
本文為「經濟部產業技術司科技專案成果」
德國聯邦最高法院(Bundesgerichtshof, BGH)在2018年2月20日的判決(Urt. V. 20.02.2018 – Az. VI ZR 30/17)中認定,網路評價網站(Bewertungsportale)之業務雖未違反聯邦資料保護法(Bundesdatenschutzgesetz, BDSG)規定,但其評價立場必須維持中立。醫師評價平台「Jameda」(www.jameda.de)之商業行為違反此項原則,故須依原告要求,刪除其在該網站之所有個人資料。 本案中,原告為執業皮膚科醫師,且非醫師評價平台「Jameda」之付費會員。然「Jameda」不僅將該醫師執業簡介列入其網站,且同時在其個人簡介旁,列出與其執業地點相鄰,具競爭關係之其他同為皮膚科醫師之付費會員廣告。反之,付費會員不但可上傳個人照片,且在其執業簡介旁,不會出現與其診所相鄰之競爭者廣告。 聯邦最高法院依據聯邦資料保護法第35條第2項第2款第1號 (§35 Abs. 2 S. 2 Nr. 1 BDSG) 規定,並經衡量同法第29條第1項第1款第1號 (§29 Abs. 1 S. 1 Nr. 1 BDSG) 規定之效果後,同意原告對「Jameda」提出刪除網頁所列個資之請求。法院見解認為,「Jameda」的廣告策略使其失去資訊與意見傳遞者之中立角色,並以自身商業利益為優先,故其言論自由不得優於原告之資訊自主權(informationelle Selbstbestimmung)。 該判決強制網路評價平台嚴格審查本身之廣告供應商務,並與聯邦憲法法院(Bundesverfassungsgericht)見解一致,用於商業目的之言論表達僅有低於一般言論自由的重要性。儘管如此,評價平台仍被視為介於患者間不可或缺的中介者(unverzichtbare Mittelperson),可使互不相識的病患,藉此獲得經驗交流的機會。 儘管本案判決同意原告刪除評價網站中所儲存個人資料之請求,但見解中,仍肯定評價網站具有公開醫療服務資訊之功能,符合公眾利益,受評價醫師被公開之個人簡介亦僅涉及與社會大眾相關之範圍。針對網站評分及評論功能之濫用,醫師仍可對各種不當行為分別採取法律途徑保障自身權益。由此可知,德國聯邦最高法院仍認定,評價網站之評分與評論機制,仍符合聯邦資料保護法規範之宗旨,惟若該評價網站以評價機制作為商業行銷手段,則不得主張其言論及意見表達自由高於受評價者之資訊自主權。
美國FirstNet與AT&T協議共建全美公共安全寬頻網美國自911事件後,事後檢討之建議之一為統合全美單一公共安全網路,可供跨部門之第一線救災人員使用。俟後美國於2008年拍賣700MHz頻段 (Auction 73)時,原本將Block D (788-793MHz/ 758-763MHz)共10MHz規劃為全國單一執照(Nationwide License),並與公共安全(public safety)頻段相連,得標者須與美國政府簽訂網路分享協議(Network Sharing Agreement, NSA),在必要時供緊急服務優先使用,惟該頻段歷經兩次拍賣均低於底價流標。2012年,商務部成立獨立機構First Responder Network Authority (下稱FirstNet),規劃如何統合所有與公共安全相關之通訊網路,FCC在2016年將前述流標之700MHz頻段撥交FirstNet使用。 FirstNet 2017年3月宣布與AT&T達成25年之合作協議,由AT&T協助該機構建置緊急服務人員專用之全國性LTE無線寬頻網路,該網路之主要用途為當緊急事故發生時,第一線之人員可利用該關鍵基礎設施進行通訊聯繫之用。FirstNet與AT&T的合作協議主要包括以下三個部分: FirstNet將提供上下行合計共20MHz 之頻譜 (788-798MHz / 758-768MHz),該頻段係美國主要之LTE頻段,商業價值極高,且設備之生態圈極為成熟。此外,FirstNet也將在未來5年提供65億美金的建設經費,該經費來源為FCC過去頻譜拍賣之標金收入。 AT&T承諾於25年內投入400億美金用於網路基礎設施的建設與維運,並確保網路的覆蓋率。 FirstNet同意在該網路未用於緊急服務時,得做為AT&T商業網路之一部分進行營運,但是當有緊急服務需求時,應立即提供緊急救難使用。 近年來,公共安全災防 (Public Protection and Disaster Relief)寬頻網路已成為許多先進國家的首要推動政策,包含英國與境內第一大電信商Everything Everywhere (EE)合作,芬蘭政府近來亦與電信商Telia共同合作測試LTE技術之公共安全網路。
英國次世代5G策略英國文化、媒體暨體育部2017年3月8日發布「次世代行動技術:英國的5G策略」,此舉將會加速英國網路基礎建設更新並促進智慧聯網之發展。這份策略書提出了幾個重要方面來採取行動: 建構經濟實例:英國政府計畫建立新的5G試驗場,和企業共同合作發展5G科技。此試驗場預計同時在城市和偏遠地區進行,以了解不同地區環境下建設的效益,且與Ofcom合作了解目前環境與法規障礙。 調適法規:政府會持續檢查相關法規是否需要修正,並與試驗場合作了解現行法規是否適當。 地方區域的治理與能力建構:意識到地方區域於建構基礎建設的重要性,因此英國政府正在諮詢地方政府如何在地方區域進行5G建設,將會將地方政府、政府部門、土地擁有者和企業等集合組成工作小組進行5G策略的諮詢。 覆蓋率與能力匯流:政府將於2017年底前了解人類生活、工作與旅遊需達成之高品質覆蓋率要素,並於2025年前達成這些要素目標。 確保安全的5G布建:5G試驗場將會與重要安全組織如國家網路安全中心合作,以支持和發展新的安全建築來達到消費者對於5G的期待與需求。 頻譜:政府將要求Ofcom檢視現行頻譜授權策略並於2017年底提出報告,以促進4G至5G轉型。 科技與標準:政府將會持續和標準機關合作,監督市場安全與供應者的發展。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現