美國於5月通過愛國者法案修正案

  美國參議院於今年(2020年)5月,通過了由共和黨領袖 Mitch McConnell 所提議主張,恢復《愛國者法案》(Patriot Act)中,原本應於今年3月失效的215條監控條款,該條款允許執法機構在沒有搜索令的情況下,取得人民的網路歷史瀏覽和搜尋紀錄。

  此修正案授予聯邦調查局(FBI)及中央情報局(CIA)等執法機構權力,只要其認為該紀錄與犯罪調查有關並且在檢察總長的監督下,即可無須經過法官批准,獲取人民的網路歷史瀏覽和搜尋紀錄。此法案雖限制執法機構不得取得人民瀏覽和搜尋網頁的「內容」,但卻可以取得該歷史紀錄,而歷史紀錄中詳細記載了人民所瀏覽的網站及所輸入的關鍵字。

  倡導隱私保護而反對此一法案的團體,認為政府在此法案的支持下,能夠藉由打擊恐怖主義、避免社會動亂、保護國家安全以及保護兒童等理由,對人民進行監視、侵害其隱私。反對者認為網路瀏覽和搜尋紀錄是美國人最敏感、最個人和最私密的部分,人們會把所想到的每一個想法都透過網路去搜尋,並且瀏覽相關網站,因此,獲取人民的網路瀏覽和搜尋紀錄即等同於了解其內心想法。此法案的反對者包含了兩黨的部分參議員、自由派公民團體「美國公民自由聯盟(American Civil Liberties Union)」以及保守派公民團體「繁榮美國(Americans for Prosperity)」,其認為並無任何證據能夠證明政府依《愛國者法案》所進行的大規模監管,得以拯救任何人的生命。

  民主國家中,如何在犯罪追訴以及民主自由之間找到平衡,會是一個值得深究的問題。

相關連結
相關附件
你可能會想參加
※ 美國於5月通過愛國者法案修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8554&no=55&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
中國國務院發布AI行動意見,全面推動智慧應用加速現代化建設

中國國務院發布AI行動意見,全面推動智慧應用加速現代化建設 資訊工業策進會科技法律研究所 2025年12月10日 隨著人工智慧(下稱AI)技術的快速發展,全球各國政府均積極推動AI在百工百業各領域的應用,以提升國家創新力、產業競爭力與社會治理效能,中國政府亦是如此。同時,受地緣政治及經貿競爭的影響,中國政府為強化國家供應鏈安全與韌性,由政府主導加速現代化建設,以推動智慧社會新型態的發展為目標。 壹、事件摘要 中國國務院於2025年8月26日發布「關於深入實施人工智能+行動的意見」(國發[2025〕11號)(下稱行動意見)[1],旨在全面推動AI應用於各行各業,以提升國內產業生產力與創新量能,並促進人機協作的智慧社會新型態,作為推動「中國式現代化」發展之重要建設。 貳、行動意見重點內容 於該行動意見中,中國國務院提出三項階段性目標,分別為: 一、 2027年前:AI應用普及率達70%以上 推動科技、產業、消費、民生、治理與全球合作的6大核心領域全面結合AI應用,擴大AI使用普及率達70%以上,以達加速公共治理與產業創新之成效。 二、 2030年前:AI應用普及率達90%以上 強化前述6大核心領域,持續擴大AI使用普及率可達90%以上,實現研發成果共享之效益。 三、 2035年前:AI應用普及率達100% 建立全面人機協作之智慧經濟與社會新型態,作為國家現代化建設之重要基礎。 為實現前述三階段目標,中國政府針對6大核心領域提出具體行動方向,重點整理如下: 一、 AI+科學技術 為加速科研進程並推動大模型建設與應用,將強化基礎科學研究平台和重要科技基礎建設的智慧化升級,打造開放式且高品質的共享資料集,以促進AI跨領域的結合發展。同時,亦積極促進AI帶動研發模式創新與效能的提升,以加速技術研發和產品應用落地。 二、 AI+產業發展 鼓勵企業將AI導入內部策略規劃、組織架構與業務流程設計等,以建構創新的商業模式;並在技術、產品與服務體系中推動智慧化應用,強化供應鏈各環節與AI的協作,同時最佳化工業、農業及服務業的生產與服務模式,藉以帶動傳統產業轉型升級,建構新型生態體系並加速整體產能提升。 三、 AI+消費增質 透過推動AI與服務的結合,建立多元及智慧化的服務模式,加速發展智慧消費相關基礎建設;此外,推動AI應用於各類商品與設備,重點發展智慧聯網汽車、智慧機器人、智慧家居、智慧穿戴等終端商品,加速技術融合與產品創新,以提升人民生活的品質。 四、 AI+民生福祉 透過推動人機協作的模式,提供新型的工作、學習與生活型態,建立更具智慧化的社會發展模式。例如,企業雇主可藉由AI協助建立新型組織架構和管理模式,提升傳統職務執行之效率,亦或是透過AI進行技能培訓以因應勞動力短缺之情形;學校教育面向則可推動AI融入教學教材,推動更加多元與互動之學習生態;生活方面則計劃推動AI健康照護、社會服務等領域廣泛應用,全面提升公共服務與生活品質,形成具包容性的智慧化社會。 五、 AI+智慧治理 推動AI全面導入社會治理過程,以促進市政管理、政務服務及公共資源運作的智慧化轉型,並利用AI強化公共安全與網路安全治理能力,完善國家安全防護的機制;於生態層面,將運用AI推動綠色永續與人機協作,強化於環境與碳管理領域的監測、預測及治理能力,促進高效及精準的治理模式。 六、 AI+全球合作 推動AI的普及與共向,建立開放生態系、強化運算能力、資料與人才領域的國際合作,共同提升全球南方AI基礎建設,縮減全球數位落差,協助各國可平等參與智慧化發展過程,共同因應AI應用相關風險,確保技術發展安全且可信賴地發展。 參、事件評析 從上述中國國務院發布之行動意見可知,其目標在於藉由強化安全及可信賴的AI,並促進AI應用於各領域的發展,以建構可持續性的智慧化生態系,提升社會治理效率與全民生活的品質,以利國家經濟與科技的共同發展。 然而,該行動意見雖明確提出國家整體目標及治理方向,為相關領域的智慧化發展提供指引,惟對於各項目標尚未提出可操作性措施、具體政策細節,或對產官學各單位可獲得的政府資源、技術支持與協助等進行明確規範。故後續仍需持續關注相應政策措施及配套資源的發布,以評估其實際推動AI應用之成效。 [1]《国务院关于深入实施“人工智能+”行动的意见》(國發[2025]11号)。

我國去識別化實務發展-「個人資料去識別化過程驗證要求及控制措施」

我國關於個人資料去識別化實務發展 財團法人資訊工業策進會科技法律研究所 2019年6月4日 壹、我國關於個人資料去識別化實務發展歷程   我國關於個資去識別化實務發展,依據我國個資法第1條立法目的在個資之隱私保護與加值利用之間尋求平衡,實務上爭議在於達到合理利用目的之個資處理,參酌法務部103年11月17日法律字第10303513040號函說明「個人資料,運用各種技術予以去識別化,而依其呈現方式已無從直接或間接識別該特定個人者,即非屬個人資料,自非個資法之適用範圍」,在保護個人隱私之前提下,資料於必要時應進行去識別化操作,確保特定個人無論直接或間接皆無從被識別;還得參酌關於衛生福利部健保署資料庫案,健保署將其所保有之個人就醫健保資料,加密後提供予國衛院建立健保研究資料庫,引發當事人重大利益爭議,終審判決(最高行政法院106年判字第54號判決)被告(即今衛福部)勝訴,法院認為去識別化係以「完全切斷資料內容與特定主體間之連結線索」程度為判準,該案之資料收受者(本案中即為衛福部)掌握還原資料與主體間連結之能力,與健保署去識別化標準不符。但法院同時強調去識別化之功能與作用,在於確保社會大眾無法從資料內容輕易推知該資料所屬主體,並有提到關於再識別之風險評估,然而應採行何種標準,並未於法院判決明確說明。   我國政府為因應巨量資料應用潮流,推動個資合理利用,行政院以推動開放資料為目標,104年7月重大政策推動會議決議,請經濟部標檢局研析相關規範(如CNS 29191),邀請相關政府機關及驗證機構開會討論,確定「個人資料去識別化」驗證標準規範,並由財政部財政資訊中心率先進行去識別化驗證;並以我國與國際標準(ISO)調和之國家標準CNS 29100及CNS 29191,同時採用作為個資去識別化驗證標準。財政部財政資訊中心於104年11月完成導航案例,第二波示範案例則由內政部及衛生福利部(105年12月通過)接續辦理。   經濟部標準檢驗局目前不僅將ISO/IEC 29100:2011「資訊技術-安全技術-隱私權框架」(Information technology – Security techniques – Privacy framework)、ISO/IEC 29191:2012「資訊技術-安全技術-部分匿名及部分去連結鑑別之要求事項」(Information technology – Security techniques – Requirements for partially anonymous, partially unlinkable authentication),轉換為國家標準CNS 29100及CNS 29191,並據此制訂「個人資料去識別化過程驗證要求及控制措施」,提供個資去識別化之隱私框架,使組織、技術及程序等各層面得整體應用隱私權保護,並於標準公報(107年第24期)徵求新標準之意見至今年2月,草案編號為1071013「資訊技術-安全技術-個人可識別資訊去識別化過程管理系統-要求事項」(Management systems of personal identifiable information deidentification processes – Requirements),主要規定個資去識別化過程管理系統(personal information deidentification process management system, PIDIPMS)之要求事項,提供維護並改進個人資訊去識別化過程及良好實務作法之框架,並適用於所有擬管理其所建立之個資去識別化過程的組織。 貳、個人資料去識別化過程驗證要求及控制措施重點說明   由於前述說明之草案編號1071013去識別化國家標準仍在審議階段,因此以下以現行「個人資料去識別化過程驗證要求及控制措施」(以下簡稱控制措施)[1]說明。   去識別化係以個資整體生命週期為保護基礎,評估資料利用之風險,包括隱私權政策、隱私風險管理、隱私保護原則、去識別化過程、重新識別評鑑等程序,分別對應控制措施之五個章節[2]。控制措施旨在使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊(personal identifiable information, PII)進行去識別化之過程。再就控制措施對應個人資料保護法(下稱個資法)說明如下:首先,組織應先確定去識別化需求為何,究係對「個資之蒐集或處理」或「為特定目的外之利用」(對應個資法第19條第1項第4、5款)接著,對應重點在於「適當安全維護措施」,依據個資法施行細則第12條第1項規定,公務機關或非公務機關為防止個資被竊取、竄改、毀損、滅失或洩漏,採取技術上及組織上之措施;而依據個資法施行細則第12條第2項規定,適當安全維護措施得包括11款事項,並以與所欲達成之個資保護目的間,具有適當比例為原則。以下簡要說明控制措施五大章節對應個資法: 一、隱私權政策   涉及PII處理之組織的高階管理階層,應依營運要求及相關法律與法規,建立隱私權政策,提供隱私權保護之管理指導方針及支持。對應個資法施行細則第12條第2項第5款適當安全維護措施事項「個人資料蒐集、處理及利用之內部管理程序」,即為涉及個資生命週期為保護基礎之管理程序,從蒐集、處理到利用為原則性規範,以建構個資去識別化過程管理系統。 二、PII隱私風險管理過程   組織應定期執行廣泛之PII風險管理活動並發展與其隱私保護有關的風險剖繪。直接對應規範即為個資法施行細則第12條第2項第3款「個人資料之風險評估及管理機制」。 三、PII之隱私權原則   組織蒐集、處理、利用PII應符合之11項原則,包含「同意及選擇原則」、「目的適法性及規定原則」、「蒐集限制原則」、「資料極小化原則」、「利用、保留及揭露限制」、「準確性及品質原則」、「公開、透通性及告知原則」、「個人參與及存取原則」、「可歸責性原則」、「資訊安全原則」,以及「隱私遵循原則」。以上原則涵蓋個資法施行細則第12條第2項之11款事項。 四、PII去識別化過程   組織應建立有效且周延之PII去識別化過程的治理結構、標準作業程序、非預期揭露備妥災難復原計畫,且組織之高階管理階層應監督及審查PII去識別化過程之治理的安排。個資法施行細則第17條所謂「無從識別特定當事人」定義,係指個資以代碼、匿名、隱藏部分資料或其他方式,無從辨識該特定個人者,組織於進行去識別化處理時,應依需求、風險評估等確認注意去識別化程度。 五、重新識別PII之要求   此章節為選驗項目,需具體依據組織去識別化需求,是否需要重新識別而決定是否適用;若選擇適用,則保留重新識別可能性,應回歸個資法規定保護個資。 參、小結   國際上目前無個資去識別化驗證標準及驗證作法可資遵循,因此現階段控制措施,係以個資整體生命週期為保護基礎,評估資料利用之風險,使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊進行去識別化之過程,透過與個資法對照個資法施行細則第12條規定之安全維護措施之11款事項,內化為我國業者因應資料保護與資料去識別化管理制度。   控制措施預計於今年下半年發展為國家標準,遵循個資法與施行細則,以及CNS 29100、CNS 29191之國家標準,參照國際上相關指引與實務作法,於技術上建立驗證標準規範供產業遵循。由於國家標準無強制性,業者視需要評估導入,仍建議進行巨量資料應用等資料經濟創新業務,應重視處理個資之適法性,建立當事人得以信賴機制,將有助於產業資料應用之創新,並透過檢視資料利用目的之合理性與必要性,作為資料合理利用之判斷,是為去識別化治理之關鍵環節。 [1] 參酌財團法人電子檢驗中心,個人資料去識別化過程驗證,https://www.etc.org.tw/%E9%A9%97%E8%AD%89%E6%9C%8D%E5%8B%99/%E5%80%8B%E4%BA%BA%E8%B3%87%E6%96%99%E5%8E%BB%E8%AD%98%E5%88%A5%E5%8C%96%E9%81%8E%E7%A8%8B%E9%A9%97%E8%AD%89.aspx(最後瀏覽日:2019/6/4) 財團法人電子檢驗中心網站所公告之「個人資料去識別化過程自評表_v1」包含控制措施原則、要求事項與控制措施具體內容,該網站並未公告「個人資料去識別化過程驗證要求及控制措施」,故以下整理係以自評表為準。 [2] 分別為「隱私權政策」、「PII隱私風險管理過程」、「PII之隱私權原則」、「PII去識別化過程」、「重新識別PII之要求」。

歐盟人工智慧辦公室發布「通用人工智慧實踐守則」草案,更進一步闡釋《人工智慧法》之監管規範

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。

美國聯邦加強導入節能績效保證專案,並規劃採購實務增訂規範

  美國總統歐巴馬於2011年12月發布備忘錄(Presidential Memorandum),要求美國聯邦政府應加強「導入節能績效保證專案(Implementation of Energy Savings Projects and Performance-Based Contracting for Energy Savings)」,並宣布未來24個月內最少將投入20億(billion)美元經費,推動聯邦機構採購實施節能績效保證專案,以改善建築物能源效率。基於政策指示,美國能源部(Department of Energy)下屬聯邦能源管理推動機構(Federal Energy Management Program,以下簡稱FEMP),研議規劃配套機制,協助導入「節能績效保證專案(Energy Savings Performance Contract,以下簡稱ESPC)」,更精簡、效率、低成本之實施模式,並助益美國能源技術服務產業(Energy Service Companies,以下簡稱ESCO)發展。   美國FEMP於2012年2月公告ESPC採購關於「資金(Financing)」部分之「資訊徵求意見書(Request for Information,RFI)」,廣詢實務各界意見,希望能繼而落實於政府採購規範及契約範本之研議,並協助ESCO業者能更順利取得資金,並協助ESCO業者能更順利取得資金,及降低資金取得成本,如此亦可有利益於所採購導入之聯邦機構。   FEMP主要係規劃探討關於ESPC融資資金,最合理且有吸引力之利率,所應考慮各項要件及利率定價模式,並且規劃建立資金協助者之優先名單(Preferred Financiers),以利配套選用。再者FEMP為推動整合,特別探討ESPC跨專案(Project Aggregation (Combining))時,可能影響資金協助者之融資與財務評估,例如數ESPC專案、數ESCO業者、由同一資金協助者承接,或是數ESPC專案、數實施地點、同一ESCO業者,同一資金協助者,亦或者數ESPC專案、數實施地點、數ESCO業者、但同一政府機構、且同一資金協助者,研析相關影響要件。   以及,FEMP並探討ESPC實施「量測驗證(Measurement and Verification),對於取得融資評估過程是否增加複雜影響因素,以及資金協助者對於量測驗證機制,是否認為將增加風險並致更高融資利率,均為重要探討議題。此項意見徵求書,未來將落實於聯邦機構政府採購之實務規範上,相關內容再持續觀察追蹤。

TOP