日本經濟產業省(下稱經產省)於2020年6月12日發布其國內產業資通安全現況與將來對策(昨今の産業を巡るサイバーセキュリティに係る状況の認識と、今後の取組の方向性)報告,指出近期針對供應鏈資通安全弱點企業所展開的攻擊,有顯著增長趨勢。為此,該報告建議共組供應鏈的企業間,應密切共享資訊;於關鍵技術之相關資訊有外洩之虞時,應向經產省提出報告;若會對多數利害關係人產生影響,並應公開該報告。遵循該報告之建議要旨,同年11月1日在各產業主要的工商團體引領下,設立了「供應鏈資通安全聯盟(原文為サプライチェーン・サイバーセキュリティ・コンソーシアム,簡稱SC3)」,以獨立行政法人資訊處理推進機構(独立行政法人情報処理推進機構,IPA)為主管機關。其目的在於擬定與推動供應鏈資通安全之整體性策略,而經產省則以觀察員(オブザーバー)的身分加入,除支援產業界合作,亦藉此強化政府與業界就供應鏈資通安全議題之對話。
只要贊同上述經產省政策方向與聯盟方針,任何法人或個人均得參加SC3。針對產業供應鏈遭遇資安攻擊的問題,經產省與IPA已有建構「資通安全協助隊(サイバーセキュリティお助け隊)」服務制度(以下稱協助隊服務),邀集具相關專長之企業,在其他企業遭遇供應鏈資安攻擊時,協助進行事故應變處理、或擔任事故發生時之諮詢窗口。而SC3則規畫為這些參與提供協助隊服務的企業建立審查認證制度。其具體任務包含擬定認證制度的審查基準草案、以及審查機關基準草案,提供IPA來建構上述基準。依該制度取得認證的企業,將獲授權使用「資通安全協助隊」的商標。同時在業界推廣協助隊服務制度,讓取得認證的中小企業得以之為拓展其業務的優勢與宣傳材料。
本文為「經濟部產業技術司科技專案成果」
所謂NPE依據現行學術界對於NPE的內涵認知,認為NPE係指不從事任何商品生產,亦不從事任何研發工作者。而在現行NPE的運作態樣上,其可包含兩種類型,其一,為大學和研究機構(例如:公、私立實驗室),其主要係由校內教職員或研究人員進行基礎性研究,並將研究成果授權予其他個人或組織來運用,其本身並不從事任何商品生產者;其二,係由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權本質上的排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。後者,英文稱其為『Patent Troll』,中文可譯為『專利巨人』、『專利蟑螂』、『專利流氓』、『專利地痞』或『專利恐怖分子』等。其主要特徵有三項,首先,此類NPE係藉由專利取得的方式,向潛在或可能的專利侵權者(alleged infringers)收取專利授權金;第二,此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;第三,此類NPE投機性地等待商品製造者(industry participants)在投入不可回復鉅額投資後,始對該商品製造者行使專利侵權主張。
歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。 個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。 此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
Web2.0 網站平台管理之法制議題研析-以網路實名制與揭露使用者身份