英國「創新持續貸款」

  英國創新局(Innovate UK)於2020年11月8日公布「創新持續貸款」(Innovation Continuity Loans)申請指南,作為COVID-19疫情應對計畫的工作項目之一,英國創新局將提供2.1億英鎊的貸款予在疫情影響下持續進行創新活動之國內中小企業。本貸款目標對象為因疫情導致出現資金缺口的中小企業,每一間公司將可申請25萬至160萬英鎊不等之創新持續貸款。

  「創新持續貸款」源自2017年的創新貸款實驗計畫(Innovation loans pilot),藉由七項創新競賽篩選出約100位申請人,提供總額約7500萬英鎊的創新貸款;此次創新持續貸款則不採競賽方式,而是針對受疫情影響的中小企業創新活動,透過審查機制提供貸款予申請人。申請人資格為正在執行受創新局補助之創新活動者、過去36個月曾受創新局補助而目前正在進行其他創新活動者或是過去36個月並未獲得創新局補助之創新活動的執行、完成或延續性工作者,且確實因COVID-19疫情影響出現資金短缺之中小企業,即可向創新局申請創新持續貸款。

  創新局將藉由審查申請者提交至今的工作成果與品質、受疫情影響程度與資金需求情形,評估該創新活動的後續發展潛力,向合格的申請人提供年利息僅3.7%的創新持續貸款。合格的申請人能在2022年3月31日或約定日期前,直到產品首次商業銷售為止,分階段領取貸款,以年利率3.7%計息;產品首次商業銷售後可額外有兩年的寬限期,在產品首次商業銷售或寬限期結束後五年內,申請人必須償還貸款,未償還部分則改採年利率7.4%計息。藉由低利貸款的資金挹注,協助從事新創活動之英國中小企業得以紓困以度過疫情難關。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 英國「創新持續貸款」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8576&no=55&tp=5 (最後瀏覽日:2025/12/10)
引註此篇文章
你可能還會想看
日本公布《行動通信領域的基礎設施共享,於電信事業法及電波法的適用關係指引》

  隨著具有高速大容量特性的第五代行動通訊(5G)技術啟用,如何促使發射射頻(Radio frequency, RF)的基地臺能夠達到小型化及多點化的目標,將是未來重要的課題。但在地理空間限制、景觀影響與法規限制等因素下,除了增設基地臺外,也可考慮「基礎設施共享」(Infrastructure Sharing)的概念。   日本總務省於2018年12月28日公布《行動通訊領域的基礎設施共享-電信事業法及電波法的適用關係指引》(移動通信分野におけるインフラシェアリングに係る電気通信事業法及び電波法の適用関係に関するガイドライン)。   本指引主要從「利用基礎設施共享,推動行動通訊網絡整備」的觀點出發,首先定義「基礎設施共享事業」之範圍與型態,其將基礎設施分為兩類,一類為土地和建物、鐵塔等工作物、另一類為電信設備(如天線、增幅器、調變器)。接著說明基礎設施分享業者在使用上述兩類基礎設施時,於電信事業法及電波法之適用。具體內容包含欲經營該事業之必要程序、業者向行動通訊業者提供基礎設施時簽訂的契約類型、提供基礎設施的條件,最後說明若行動通訊業者、電信業者等各業者間,無法就欲共享的基礎設施使用權達成共識時,相關的爭議處理流程。本指引最後亦說明各業者在使用土地和建物、鐵塔等工作物,以及電信設備時的共通措施。

美國商會呼籲我國政府儘速通過智財三法

  我國近年來對智財權保護不遺餘力,政府除祭出各種方案使智慧財產之觀念深入人心外,相關修法動作也持續進行,今年度經濟部智慧財產局更展開大規模的修法,並分別就各修正議題舉辦多場之法案公聽與說明會。諸此種種努力逐漸獲得國際間的肯定,美國政府也釋出善意,在今年初公布之二00五年三0一報告書中,特別將我國從「特別三0一優先觀察名單」中,調降為一般觀察名單。   據美國商會表示,台灣投資環境近年最大的改善,莫過於對智慧財產權的重視,以及落實智財權保障的有效執法機制。不過美國商會也認為,網路盜版猖獗及智財權案件審理費時冗長,將是台灣未來智財權保護的兩大挑戰。尤其在網路盜版方面,保智大隊前幾年查獲的案件中,只有2%與網路侵權有關,但今年到十一月底,比例上升80%,顯示網路盜版加劇,因此建議我國應加速規範P2P傳輸業者的立法,以遏止下載未經授權的音樂、影片,或其他受著作權保障的作品。   美國商會呼籲,為維持得來不易的成績,立法院應儘速在本會期通過智慧財產法院組織法草案、智慧財產案件審理法草案,及在著作權法新增技術立法,以規範P2P(網路點對點傳輸)業者等智財三項法案;與此同時,美國商會也建議未來智財法院的法官,應具備技術背景並體認國際投資競爭、偽藥及假農藥等公共衛生議題對於生技等創新產業發展之重要性。

NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針

  經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。   因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。   方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP