新加坡國會於2020年11月通過個人資料保護法之修正案

  新加坡通訊暨資訊部(Ministry of Communications and Information, MCI)於2020年11月2日發布新聞稿表示,新加坡國家議會(Parliament of Singapore)通過個人資料保護法(Personal Data Protection Act, PDPA)修正案。主要由新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)擔任執行與管理機關,而新加坡個人資料保護法僅適用於私人企業、非公務機關。

  新加坡通訊暨資訊部特別強調,該個人資料保護法於2013年1月生效,而近年物聯網、人工智慧等新興科技瞬息萬變,隨著資料量急遽增長,企業組織利用個人資料進行創新,成為了社會、經濟和生活的一部分,此次修法意在因應新興科技的進步與新商業模式的發展,使該法可適應、接軌於複雜的數位經濟趨勢,同步維護消費者在數位經濟中的權益,更加符合國際框架,使總部位於新加坡的公司在擴展全球市場時,有助其調整和降低合規成本與風險。主要將加強消費者保護並支持企業業務創新,希望以最大程度提高私部門收益、減少蒐集和利用個人資料的風險,以取得平衡,修訂重點整理如下:

  1. 透過組織問責制度,加強消費者之信任;
  2. 加強組織使用個人資料開發創新產品,提供個人化服務、提高組織之營運效率;
  3. 資料外洩時的強制性通知規定、責任(可參見26A條以下);
  4. 提高企業造成資料外洩時的罰款最高額度,當企業組織年營業額超過1000萬美金者,可處以該組織在新加坡年營業額的10%,或100萬新加坡幣(約62萬歐元),以較高者為準(可參見48J條以下);
  5. 強化個人資料保護委員會的執法權限,提高執法效率;
  6. 為了強化消費者的自主權(consumer autonomy)、對其個資的控制權,規範資料可攜義務(data portability obligation),使個人能要求將其個人資料的副本傳輸到另一個組織(可參見26F條以下);
  7. 允許企業在特定合法利益(legitimate interests)、業務改善(business improvement purpose)之目的情況下,對於個資之蒐集、使用、揭露,得例外不經當事人同意,意即不需經當事人事先同意,即可蒐集、利用或揭露消費者個資,例如開發改善產品和進行市場調查研究、在支付系統中進行異常檢測以防止詐欺或洗錢、改善營運效率和服務等目的。(可參見附表一第三、第五部分)
  8. 允許關聯企業(related corporations)間,在基於「明確定義相關限制」(clearly defined limits)之相同目的前提下,例如透過具有拘束力的公司規則(binding corporate rules)施以一定限制時,可在彼此內部間蒐集、揭露個人資料。(可參見附表一第四部分)
  9. 針對「視為同意」(deemed consent)之相關規定,包含告知後同意(consent by notification)做進一步修訂,將允許企業組織在具契約必要性等特定情形下,在未明確徵得當事人同意之下,向另一個組織或外部承包商(contractors)揭露其個人資料,以利履行契約(fulfil contracts),但該組織與該當事人之間的契約中需有明示條款(express terms)。(可參見15A條以下)

相關連結
你可能會想參加
※ 新加坡國會於2020年11月通過個人資料保護法之修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8580&no=55&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險

韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險 資訊工業策進會科技法律研究所 2024年05月15日 創作內容的流通利用是發揮文化經濟力的核心關鍵,但大數據和機器學習技術的快速發展,人工智慧(以下簡稱AI)已成功應用於許多內容生成,大幅推進圖像、影音、文本的識別、處理、分析、甚至生成等創作成本,但從實現生成式AI而建立基礎模型開始,到AI產出物的生成,均存在可能侵權或被侵權的風險。如何衡平考慮著作權人和使用者立場,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統,已成為各國必須思考因應重要課題。 壹、事件摘要 韓國文化體育觀光部的著作權委員會於2024-01-16發布「生成式人工智慧著作權指引(생성형 AI저작권안내서)」[1],這份指引的目的是希望對涉及生成式人工智慧(Generative AI)產出過程中的各方(AI業者、著作權人、AI使用者)提供有關著作權的注意事項。因為韓國文化與著作權主管機關認為,雖然隨著人工智慧技術的迅速發展,在各個領域的應用為經濟和社會利益產生許多助益,但也出現了一個無法預測的環境,影響到著作權產業和創作活動的各個方面;有人將生成式AI用作創作工具,同時也有人擔心生成式AI可能帶來的經濟損失和就業威脅等問題。因此,韓國著作權委員會成立了由學界、法界和技術界專家以及利害關係人組成的「AI-著作權制度改善工作小組」,於2023年2月成立,以審查生成式AI引發的著作權問題並尋找應對方法,並根據該工作小組的討論而編寫提出該指引[2]。 貳、重點說明 該指引從實現生成式AI而建立基礎模型開始,到AI產出物的生成,聚焦於可能引發法律爭議的數據學習和AI產出物生成部分,從現行著作權法的角度說明AI業者、著作權人和AI使用者需要了解的內容。同時為幫助理解,亦納入介紹目前提供的生成式AI案例以及相關的國內外立法趨勢。但該指引特別說明其發布並非為提供其國會正在討論的著作權法修訂方向,而是為了在未來通過進一步的討論、研究和意見徵求過程等,制定出合理的解決方案,並透過制定衡平考慮著作權人和使用者立場的著作權法律制度,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統[3]。 該指引架構主要分為五大主題[4],同時提供問答集與附錄參考資料。五大主題分別為: 一、生成式AI技術與著作權(생성형 AI 기술과 저작권)[5]:從著作權角度看生成式AI技術,說明生成式AI技術的意義和應用案例。 二、對AI經營者的指導(AI 사업자에 대한 안내사항)[6]:包括生成式AI的學習階段的風險、AI產出物的生成階段的風險、建議採取防範措施以區別AI產出物與人類創作物。例如人工智慧業務經營者在提供相關服務時,確保不會產生與現有作品相同或相似的人工智慧輸出;該指引並建議參酌韓國2023 年 5 月提出的《內容產業振興法》修正提案(法案編號2122180)[7]規定,於人工智慧產出內容中應標示係採用人工智慧技術製作[8]。 三、對著作權所有人的指導(저작권자에 대한 안내사항)[9]:在AI學習階段應考慮的事項、防止AI產出物侵犯著作權的建議。該指引特別建議如果著作權人不希望其作品用於人工智慧學習,可以透過適當方式表達反對,以防止作品被用於人工智慧學習;即使著作權人後來得知自己的作品被用於人工智慧學習,亦可適當地採取技術手段來防止,以避免放任使用產生默許的問題。包括使用例如“Glaze”、“Photo Guard”等此類新的防止技術。 四、對AI使用者的指導(AI 이용자에 대한 안내사항)[10]:提醒注意生成式AI使用可能涉及的著作權侵犯情況,並說明在研究、教育、創作等領域的倫理和政策考慮。例如,提醒使用者將現有作品原樣輸入提示視窗或輸入誘導創作相同或相似作品的文字,從而創建與現有作品相同或相似的人工智慧輸出,然後將其發佈到平台上的方法,將存有侵權風險。即使是用人工智慧學習歌手聲音而重新創作或產生現有歌手的歌曲,也會涉及重製或輸入侵權資料的疑慮。同時,對學術研究或投稿,該指引特別建議在論文等中引用生成人工智慧撰寫的文章之前檢查其來源,並標註特定段落是以什麼人工智慧工具與指令所生成。 五、AI產出的著作權登記(AI 산출물과 저작권 등록)[11]:與AI產出物相關的著作權爭議、AI產出物是否可以登記著作權、有關AI產出物著作權登記的國內外案例、登記時應注意的事項等。該指引強調對於不能被視為在任何表達行為中做出人類創造性貢獻的人工智慧輸出,不可能進行著作權註冊。但在人類以創意方式進行修改、增加等“額外附加工作”(추가 작업)的情況下,該額外工作的部分才會被認定為具有著作權屬性,可以進行著作權登記。但是,著作權註冊的效果僅限於附加的部分(추가 작업한 부분)[12]。 另該指引在問答集中主要釋疑相關疑義,例如:為什麼AI的學習會涉及著作權問題?如果無法確定AI學習所使用的作品的權利人,AI業者如何獲得合法使用權?個別提示用於製作AI產出物也受著作權保護嗎?AI產出物是否無法受到著作權法保護?等等韓國文化與著作權主管機關認為常見或已出現爭議的案例,並依其現行法令或見解趨勢,提供主管機關的看法或解答。 此外,為協助其讀者更深入了解人工智慧的原理、爭議與國際發展趨勢,該指引並精要的整理出下述主題,包括:使用人工神經網絡進行學習的過程、生成式AI相關訴訟和著作權爭議、國內外AI相關應對情況、國內廣播公司和新聞機構有關AI學習資料取得的政策條款等補充明,做為該手冊的附錄資料。特別是其所整理之政策條款,顯示韓國新聞媒體已著手因應被用於AI訓練、學習與內容產生的風險。 參、事件評析 綜觀韓國文化體育觀光部的著作權委員會發布「生成式人工智慧著作權指引」可以看出,韓國認為生成式人工智慧在文創領域的議題,目前較為迫切需要處理的是創作人的著作權於AI訓練時被侵權,與創作時運用AI的侵害他人權利的風險,以及AI生成內容的識別與可保護範圍的界定,但促進人工智慧技術發展和相關產業發展,均為韓國關切議題;AI在未來如何衡平考慮著作權人和使用者立場尚待研析建立共識並透過國會立法修正著作權法律制度。 因此,該手冊除提供AI的技術背景說明外,並強調該指引並非修法政策的官方說明,同時以如何降低風險與維護權益的角度,提醒生成式人工智慧(Generative AI)產出過程中的AI經營者、著作權人、AI使用者,提供有關著作權的注意事項與例如防制技術運用、標註AI生成等預防措施。同時為再進一步幫助理解,除風險說明外並以問答方式強化重點提示,並舉相關媒體的AI訓練資料提供政策實例供參考,內容本身精要但附錄細節說明詳盡,但對於未必了解著作權法令的文創領域從業人員而言,內容簡明且建議措施直接具體,值得我國主管機關訂定相關指引之參考。 [1]「生成型人工智慧著作權指引(생성형 AI저작권안내서)」,檔案下載https://www.copyright.or.kr/information-materials/publication/research-report/view.do?brdctsno=52591#(最後瀏覽日:2024/05/25)。 [2]詳前註指引之前言,頁6~7。 [3]同前註。 [4]其中尚有第六主題說明未來的法令整備規劃,此部分較屬政策措施方向,較非指引重點,故本文此處未予列入說明重點。 [5]同前註指引,頁7。 [6]同前註指引,頁15。 [7]去年5月,國會文化體育觀光委員會委員長李相憲提出了《內容產業振興法》的部分修正案,其中包括對人工智慧製作的內容強制貼上人工智慧標籤。該修正案目前正在國民議會審議中。https://www.4th.kr/news/articleView.html?idxno=2056520,(最後瀏覽日:2024/05/25)。 [8]同前註1指引,頁21。 [9]同前註1指引,頁23。 [10] 同前註1指引,頁29。 [11]同前註1指引,頁39。 [12]同前註1指引,頁41。

美國CAFC透過Abbvie, Inc. v. Kennedy Inst.案確認顯而易見重複專利制度

中國大陸財政部及科技部印發《國家重點研發計畫資金管理辦法》

  於2016年12月30日,中國大陸財政部及科技部為規範國家重點研發計畫管理,切實提高資金使用效益聯合發佈了《國家重點研發計畫資金管理辦法》。   該計畫以支援解決重大科技問題為目標,以“優化資源配置、完善管理機制、提高資金效益”為重點,辦法全文共8章57條,根據國家重點研發計畫特點,從預算編制到執行、結題驗收到監督檢查,針對全過程提出了資金管理的要求,明確《辦法》制定的目的和依據、重點研發計畫資金支援方向、管理使用原則和適用範圍,就重點專項概預算管理、專案資金開支範圍、預算編制與審批、預算執行與調劑、財務驗收、監督檢查等具體內容和流程、職責做了明確規定。   與原科技計畫資金管理辦法相比,《辦法》主要有以下變化: 1.建立了適應重點研發計畫管理特點的概預算管理模式。 2.遵循科研活動規律,落實“放、管、服”改革。適應科研活動的不確定性的特點,《辦法》堅持簡政放權,簡化預算編制,下放預算調劑許可權。 3.突出以人為本,注重調動廣大科研人員積極性。   為推動辦法有效落實,財政部及科技部並要求相關部門、專案承擔單位需要共同做好以下工作: 1.相關主管部門應當督促所屬承擔單位加強內控制度和監督制約機制建設、落實重點專項項目資金管理責任。 2.財政部、科技部將組織開展宣傳培訓,指導各有關部門和單位開展學習,全面提高對《辦法》的認識和理解,為政策執行到位提供保障。 3.科技部、財政部將通過專項檢查、專項審計、年度報告分析、舉報核查、績效評價等方式,對專業機構、專案承擔單位貫徹落實《辦法》情況進行監督檢查或抽查。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP