新加坡國會於2020年11月通過個人資料保護法之修正案

  新加坡通訊暨資訊部(Ministry of Communications and Information, MCI)於2020年11月2日發布新聞稿表示,新加坡國家議會(Parliament of Singapore)通過個人資料保護法(Personal Data Protection Act, PDPA)修正案。主要由新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)擔任執行與管理機關,而新加坡個人資料保護法僅適用於私人企業、非公務機關。

  新加坡通訊暨資訊部特別強調,該個人資料保護法於2013年1月生效,而近年物聯網、人工智慧等新興科技瞬息萬變,隨著資料量急遽增長,企業組織利用個人資料進行創新,成為了社會、經濟和生活的一部分,此次修法意在因應新興科技的進步與新商業模式的發展,使該法可適應、接軌於複雜的數位經濟趨勢,同步維護消費者在數位經濟中的權益,更加符合國際框架,使總部位於新加坡的公司在擴展全球市場時,有助其調整和降低合規成本與風險。主要將加強消費者保護並支持企業業務創新,希望以最大程度提高私部門收益、減少蒐集和利用個人資料的風險,以取得平衡,修訂重點整理如下:

  1. 透過組織問責制度,加強消費者之信任;
  2. 加強組織使用個人資料開發創新產品,提供個人化服務、提高組織之營運效率;
  3. 資料外洩時的強制性通知規定、責任(可參見26A條以下);
  4. 提高企業造成資料外洩時的罰款最高額度,當企業組織年營業額超過1000萬美金者,可處以該組織在新加坡年營業額的10%,或100萬新加坡幣(約62萬歐元),以較高者為準(可參見48J條以下);
  5. 強化個人資料保護委員會的執法權限,提高執法效率;
  6. 為了強化消費者的自主權(consumer autonomy)、對其個資的控制權,規範資料可攜義務(data portability obligation),使個人能要求將其個人資料的副本傳輸到另一個組織(可參見26F條以下);
  7. 允許企業在特定合法利益(legitimate interests)、業務改善(business improvement purpose)之目的情況下,對於個資之蒐集、使用、揭露,得例外不經當事人同意,意即不需經當事人事先同意,即可蒐集、利用或揭露消費者個資,例如開發改善產品和進行市場調查研究、在支付系統中進行異常檢測以防止詐欺或洗錢、改善營運效率和服務等目的。(可參見附表一第三、第五部分)
  8. 允許關聯企業(related corporations)間,在基於「明確定義相關限制」(clearly defined limits)之相同目的前提下,例如透過具有拘束力的公司規則(binding corporate rules)施以一定限制時,可在彼此內部間蒐集、揭露個人資料。(可參見附表一第四部分)
  9. 針對「視為同意」(deemed consent)之相關規定,包含告知後同意(consent by notification)做進一步修訂,將允許企業組織在具契約必要性等特定情形下,在未明確徵得當事人同意之下,向另一個組織或外部承包商(contractors)揭露其個人資料,以利履行契約(fulfil contracts),但該組織與該當事人之間的契約中需有明示條款(express terms)。(可參見15A條以下)

相關連結
你可能會想參加
※ 新加坡國會於2020年11月通過個人資料保護法之修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8580&no=55&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
中國大陸國務院印發關於實施《促進科技成果轉化法》之規定

  中國大陸於2015年8月29日修改了其《促進科技成果轉化法》,為了該法的實施,中國大陸國務院於今年2月17日的常務會議中,即發表了其對於鼓勵研究機構及大專院校之科技研發成果運用的相關措施;而針對這些措施,中國大陸國務院於同月26日制定了相關的具體規定,並在3月2日時發布,並行文於各相關機關。   該規定分作16點,主要分三個大方向,包括促進研究機構及大專院校的科技研發成果轉移於民間企業、鼓勵科技研發人員發展創新技術以及創業活動,與科技研發環境的營造等等。   具體而言,其主要措施包括允許研發機構得自主決定其科技研發成果的運用,原則上不需要向政府申請核准或報備、其運用後的收入不需繳交國庫,得全部留於研發機構內,用於對研究人員之獎勵及機構內科技研發之用、其並對該收入用於對研究人員獎勵之比例下限作出明文規定、允許國立研發機構及大專院校之研究人員在一定條件下得保留原職位在一定期間內至民間企業兼職,或進行創業活動,以從事科技研發成果的運用,以及對研發機構的考核標準應納入對機構之科技研發成果及運用的評鑑等等。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

澳洲隱私專員主張應從嚴認定個人資料去識別化

  澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)專員今年(2016)4月發表聲明認為,在符合特定條件之情形下,亦即,去識別化過程符合OAIC認定之最高標準時,去識別化後之資料不適用「1988隱私法案」(Privacy Act);澳洲企業組織目前所進行之個人資料去識別化,是否已符合「1988隱私法案」之規範要求,OAIC仍持續關注。OAIC近期準備提出去識別化認定標準之指引草案。   澳洲「1988隱私法案」揭示了「澳洲隱私原則」(Australian Privacy Principles, APPs),就非公務機關蒐集、利用、揭露與保存設有規定,APPs第6條更明文限制非公務機關揭露個人資料,於特定情況下,APPs允許個人資料經去識別化後揭露。例如,APPs第11.2條規定,若非公務機關當初之蒐集、利用目的已消失,須以合理方式將個人資料進行銷毀或去識別化。   如非公務機關係合法保有個人資料,即無銷毀或去識別化義務;此外,若所保有個人資料屬健康資料者,因係澳洲政府機關以契約方式委託非公務機關,非公務機關亦無銷毀或去識別化義務。應注意者,APPs原則上禁止非公務機關基於學術研究、公共衛生或安全之目的,主動蒐集個人健康資料 (APPs第16B(2)條),同時亦禁止基於學術研究、公共衛生或安全目的,就保有之個人資料進行去識別化 (APPs第16B(2)(b)條)。如非基於前述目的,且符合APPs第16B(2)條之要件者,非公務機關始得基於研究、公共衛生或安全目的蒐集個人健康資料 (APPs第95A條)。   其他如「稅號指引」(Tax File Number Guidelines)、隱私專員所提「2014隱私(財務信用有關研究)規則」(Privacy Commissioner’s Privacy (Credit Related Research) Rule 2014) 等,均就個人資料去識別化訂有相關規範。   未來以資料為導向之經濟發展,將需堅實的隱私保護作為發展基礎,澳洲去識別化個人資料認定標準之提出,以及標準之認定門檻,殊值持續關注。

美國國會推動研擬國家潔淨能源標準法案

  美國參議員院能源與自然資源委員會(U.S. Senate Committee on Energy and Natural Resources)主席Jeff Bingaman於2012年3月7日向國會提出推動建立潔淨能源標準(The Clean Energy Standard,CES)法案。該提案的主要內容為,自2015年開始,所有電力業者(electric utility)的能源必須最少有24%是來自於潔淨能源,並且每年增加3%直至2035年達到84%。   潔淨能源發電除了風力、太陽能等再生能源發電之外,還包括核能、天然氣和碳捕集與儲存(Carbon capture and storage, CCS)技術的燃煤火力發電等。同時,為了鼓勵發電廠採用再生能源,零碳發電機將可以得到全額的信貸,低碳發電機則可依其碳濃度(carbon intensity)(與最高效的燃煤火力發電廠的之比較)的比例獲得部分貸款。為使提案獲得支持,提案中並沒有對總量排放或是發電量成長上做出限制。至目前為止,共有八位民主黨參議員為該法案的共同提案人,Bingaman預計將在未來幾週內與行政官員和公用事業官員舉行聽證,並尋求支持。   歐巴馬總統在2011和2012年的國情咨文中皆呼籲國會通過潔淨能源標準,並且在2013年的預算提案中提到,確保美國在潔淨能源經濟的領導地位是政府的戰略核心之一,此法案的推動便是為了呼應美國目前重要的政策走向,因此政府對國會通過該法案亦表達了支持的立場。,潔淨能源標準將會驅動潔淨能源領域中的創新和投資,並且帶來大量的就業機會,幫助美國維持在潔淨能源經濟中的領先地位,因此,潔淨能源標準建立的討論是重要且必須的,而可以預期的是,除了吸引大量投資者、發展美國的多元化電力發電態樣和碳排放量的大幅下降以外,更重要的是,將引起世界各國對此議題的廣泛討論,因而值得持續關注。

TOP